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ABSTRACT

As machine learning is increasingly used to inform consequential decision-making
(e.g., pre-trial bail and loan approval), it becomes important to explain how the
system arrived at its decision, and also suggest actions to achieve a favorable
decision. Counterfactual explanations –“how the world would have (had) to be
different for a desirable outcome to occur”– aim to satisfy these criteria. Existing
works have primarily focused on designing algorithms to obtain counterfactual
explanations for a wide range of settings. However, one of the main objectives
of “explanations as a means to help a data-subject act rather than merely un-
derstand” has been overlooked. In layman’s terms, counterfactual explanations
inform an individual where they need to get to, but not how to get there. In this
work, we rely on causal reasoning to caution against the use of counterfactual
explanations as a recommendable set of actions for recourse. Instead, we pro-
pose a shift of paradigm from recourse via nearest counterfactual explanations to
recourse through minimal interventions, moving the focus from explanations to
recommendations.

1 INTRODUCTION

Predictive models are being increasingly used to support consequential decision-making in contexts,
e.g., denying a loan, rejecting a job applicant, or prescribing life-altering medication. As a result,
there is increasing social and legal pressure Voigt & Von dem Bussche (2017) to provide expla-
nations that help the affected individuals to understand “why a prediction was output”, as well as
“how to act” to obtain a desired outcome. Answering these questions, for the different stakehold-
ers involved, is one of the main focuses of explainable machine learning Kodratoff (1994); Rüping
(2006); Doshi-Velez & Kim (2017); Lipton (2018); Rudin (2018); Gunning (2019).

In this context, several works have proposed to explain a model’s predictions of an affected indi-
vidual using counterfactual explanations, which are defined as statements of “how the world would
have (had) to be different for a desirable outcome to occur” Wachter et al. (2017). Of specific impor-
tance are nearest counterfactual explanations, presented as the most similar instances to the feature
vector describing the individual, that result in the desired prediction from the model Laugel et al.
(2017); Karimi et al. (2019). A closely related term is recourse – the actions required for, or “the sys-
tematic process of reversing unfavorable decisions by algorithms and bureaucracies across a range
of counterfactual scenarios” – which is argued as the underwriting factor for temporally extended
agency and trust Venkatasubramanian & Alfano (2020).

Counterfactual explanations have shown promise for practitioners and regulators to validate a model
on metrics such as fairness and robustness Ustun et al. (2019); Sharma et al. (2019); Karimi et al.
(2019). However, in their raw form, such explanations do not seem to fulfill one of the primary
objectives of “explanations as a means to help a data-subject act rather than merely understand”
Wachter et al. (2017).

The translation of counterfactual explanations to a recommendable set of actions (recourse) was first
explored by Ustun et al. (2019), where additional feasibility constraints were imposed to support the
concept of actionable features (e.g., prevent asking the individual to reduce their age or change their
race). While a step in the right direction, this work and others that followed Sharma et al. (2019);
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Figure 1: Illustration of an example causal data generative process governing the world, showing
both the graphical model, G, and the structural causal model, M, Pearl (2000). In this example,
X1 represents an individual’s annual salary, X2 is bank balance, and Ŷ is the output of a fixed
deterministic predictor hθ, predicting the eligibility of an individual to receive a loan.

Karimi et al. (2019); Mothilal et al. (2019); Poyiadzi et al. (2019) implicitly assume that the set of
actions resulting in the desired output would directly follow from the counterfactual explanation.
This arises from the assumption that “what would have had to be in the past” (retrodiction) not
only translates to “what should be in the future” (prediction) but also to “what should be done
in the future” (recommendation). We challenge this assumption and attribute the shortcoming of
existing approaches to their lack of consideration for real-world properties, specifically the causal
relationships governing the world in which actions will be performed. For ease of exposition, we
present the following examples.1

Example #1: Consider, for example, the setting in Figure 1 where an individual has been denied
a loan and seeks an explanation and recommendation on how to proceed. This individual has an
annual salary (X1) of $75, 000 and an account balance (X2) of $25, 000 and the predictor grants a
loan based on the binary output of hθ = sgn(X1 + 5 · X2 − $225, 000). Existing approaches may
identify nearest counterfactual explanations as another individual with an annual salary of $100, 000
(+%33) or a bank balance of $30, 000 (+%20), therefore encouraging the individual to reapply
when either of these conditions are met. On the other hand, bearing in mind that actions take place
in a world where home-seekers save %30 of their salary (i.e., X2 := 3/10·X1+U2), a salary increase
of only %14 to $85, 000 would result in $3, 000 additional savings, with a net positive effect on the
loan-granting algorithm’s decision.

Example #2: Consider now another setting of Figure 1 where an agricultural team wishes to increase
the yield of their rice paddy. While many factors influence yield = hθ(temperature, solar radiation,
water supply, seed quality, ...), the primary actionable capacity of the team is their choice of paddy
location. Importantly, the altitude at which the paddy sits has an effect on other variables. For
example, the laws of physics state that a 100m increase in elevation results in a 1◦C decrease in
temperature on average. Therefore, it is conceivable that a counterfactual explanation suggesting an
increase in elevation for optimal yield, without consideration for downstream effects of the elevation
increase on other variables, may indeed result in the prediction not changing.

The two examples above show the pitfalls of generating a recommendable set of actions directly
from counterfactual explanations without consideration for the world structure in which the actions
will be performed. Acting on the recommendations derived directly from counterfactual explana-
tions, is asking the individual in Example #1 for too much effort, and for effort that does not even
result in the desired output in Example #2. We remedy this situation via a fundamental reformula-
tion of the recourse problem, and incorporate knowledge of causal dependencies into the process of
generating recommendations, that if acted upon would result in a counterfactual explanation, i.e., an
instance that favourably changes the output of hθ.

Our Contributions: In this paper, we first provide a causal analysis to illuminate the intrinsic
limitations of the setting in which recommendations directly follow counterfactual explanations.
Importantly, we show that even when equipped with knowledge of causal dependencies after-the-
fact, generating recommendations from pre-computed (nearest) counterfactual explanations may
prove sub-optimal. Second, in order to solve the above limitations, we propose a fundamental
reformulation of the recourse problem, which relies on tools of structural counterfactuals to directly
incorporate causal dependencies for a broad class of causal models. The resulting Recourse through
Minimal Interventions thus informs stakeholders on how to act in addition to understand.

1See Barocas et al. (2020) for additional examples.
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2 OVERVIEW OF COUNTERFACTUAL EXPLANATIONS

Counterfactual explanations are statements of “how the world would have (had) to be different for
a desirable outcome to occur” Wachter et al. (2017). In the context of explainable machine learning,
the literature has focused on finding nearest counterfactual explanations (i.e., instances),2 which
result in the desired prediction while incurring the smallest change to the individual’s feature vector,
as measured by a context-dependent dissimilarity metric, dist : X × X → R+. This problem has
been formulated as the following optimization problem Wachter et al. (2017):

xCFE∗ ∈ arg min
x

dist(x,xF)

s.t. hθ(x) 6= hθ(x
F)

x ∈ Plausible ,

(1)

where xF ∈ X is the factual instance; xCFE∗ ∈ X is a (perhaps not unique) nearest counterfactual
instance; hθ is the fixed predictor; and P is an optional set of plausibility constraints, e.g., the
instance be from a high density region of the input space Joshi et al. (2019); Poyiadzi et al. (2019).

Most of the existing approaches in the counterfactual explanations literature have focused on pro-
viding solutions to the optimization problem in equation 1, by exploring semantically meaningful
distance/dissimilarity functions dist(·, ·) between individuals (e.g., `0, `1, `∞, percentile-shift), ac-
commodating different predictive models hθ (e.g., random forest, multilayer perceptron), and re-
alistic plausibility constraints, P . In particular, Wachter et al. (2017) and Mothilal et al. (2019)
solve equation 1 using gradient-based optimization; Russell (2019) and Ustun et al. (2019) employ
mixed-integer linear program solvers to support mixed numeric/binary data; Poyiadzi et al. (2019)
use graph-based shortest path algorithms; Laugel et al. (2017) use a heuristic search procedure by
growing spheres around the factual instance; Guidotti et al. (2018) and Sharma et al. (2019) build
on genetic algorithms for model-agnostic behavior; and Karimi et al. (2019) solve equation 1 using
satisfiability solvers with closeness guarantees.

Although nearest counterfactual explanations provide an understanding of the most similar set of
features that result in the desired prediction, they stop short of giving explicit recommendations on
how to act to realize this set of features. The lack of specification, in counterfactual explanations, of
the actions required to realize xCFE∗ from xF leads to uncertainty and limited agency for the individ-
ual seeking recourse. In the next section, we elucidate the process of achieving a desired output, i.e.,
realizing a [nearest] counterfactual explanation via a [minimal] set of recommendable actions.

3 RECOURSE VIA COUNTERFACTUAL EXPLANATIONS

As the focus shifts away from finding [nearest] counterfactual explanations to obtaining the [min-
imal] set of recommendable actions that result in such explanations, we here follow Ustun et al.
(2019) to rewrite equation 1 as:

δ∗ ∈ arg min
δ

cost(δ;xF)

s.t. hθ(x
CFE) 6= hθ(x

F)

xCFE = xF + δ

xCFE ∈ Plausible

δ ∈ Feasible ,

(2)

where cost(·;xF) : X ×X → R+ is a user-specified cost that encodes preferences between feasible
actions from xF, and F and P are optional sets of feasibility and plausibility constraints,3 restricting
the actions and the resulting counterfactual explanation, respectively. The feasibility constraints
in equation 2, as introduced by Ustun et al. (2019), aim at restricting the set of features that the

2A counterfactual instance can be from the dataset Wexler et al. (2019); Poyiadzi et al. (2019), or generated
as in Wachter et al. (2017); Ustun et al. (2019); Karimi et al. (2019) among others.

3Note the difference in definition: “feasible” means possible to do, whereas “plausible” means possibly
true, believable or realistic.
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individual may act upon.4 For instance, recommendations should not ask an individual to reduce
their age. The seemingly innocent reformulation of equation 1 as equation 2 is founded on two
assumptions:

A1: the feature-wise vector difference between factual and nearest counterfactual instances, δ∗ =
xCFE∗ −xF, directly translates to the minimal action set, A∗, i.e., performing the actions in A∗ starting
from xF will result in xCFE∗ ; and

A2: there is a 1-1 mapping between dist(·, ·) and cost(·; ·), whereby larger actions incur higher cost
and larger distance.

Unfortunately, these assumptions only hold in restrictive settings, rendering A∗ sub-optimal or infea-
sible in many real-world scenarios. Specifically, A1 holds only if (i) the individual applies effort in
a world where changing a variable does not affect other variables (i.e., features are independent); or
if (ii) the individual changes the value of a subset of variables while simultaneously enforcing that
the value of all other variables remain unchanged (i.e., breaking dependencies between features).
Beyond the sub-optimality that arises from assuming/reducing to an independent world in (i), and
disregarding the feasibility of non-altering actions in (ii), non-altering actions may naturally incur a
cost which is not captured in the current definition of cost, and hence A2 does not hold either.

Therefore, except in trivial cases where the model designer actively inputs pair-wise independent
features to hθ, generating recommendations from counterfactual explanations in this manner, i.e.,
ignoring the dependencies between features, warrants reconsideration. We formalize these short-
comings using the language of causality.

3.1 A CAUSAL PERSPECTIVE: ACTIONS AS INTERVENTIONS

LetM∈ Π be a Structural Causal Model (SCM) capturing all inter-variable causal dependencies in
the real world.M = 〈F,X,U〉 is characterized by the endogenous variables, X ∈ X , the exogenous
variables, U ∈ U , and a sequence of structural equations F : U → X , describing how endogenous
variables can be (deterministically) obtained from the exogenous variables Pearl (2000); Spirtes et al.
(2000). Often, a model,M, is illustrated using a directed graphical model, G (see, e.g., Figure 1).

From a causal perspective, recommendable actions may be carried out via structural interventions,
A : Π → Π, which can be thought of as a transformation between SCMs Pearl (1994; 2000). For
instance, the set of interventions can be constructed as A = do({Xi := ai}i∈I) where I contains
the indices of the subset of endogenous variables to be intervened upon. In this case, for each
i ∈ I , the do-operator replaces the structural equation for the variable Xi in F with Xi := ai.
Correspondingly, graph surgery is performed on G, severing graph edges incident on an intervened
variable, Xi, with a single assignment corresponding to the value of the intervention, i.e., ai. Thus,
performing the actions, A, in a world, M, yields the updated world model MA with structural
equations FA = {Fi} i 6∈I ∪ {Xi := ai}i∈I .

While structural interventions are used to predict the effect of actions on the world as a whole
(i.e., howM becomesMA), in the context of recourse, we desire to model the effect of actions on
one individual’s situation (i.e., how xF becomes xSCF). We compute such effects using structural
counterfactuals Pearl et al. (2016), as explained below.

Assuming that M factorizes as a directed acyclic graph (DAG), and full specification of F (and
F−1, such that F(F−1(x)) = x), X can be uniquely determined given the value of U (and vice-
versa). Hence, one can determine the distinct values of background variables that give rise to a
particular realization of the endogenous variables, {Xi = xFi }i ⊆ X , as F−1(xF).5 As a result,
we can compute any structural counterfactuals query xSCF, which automatically account for inter-
variable causal dependencies, for an individual xF as xSCF = FA(F−1(xF)), that is: “given model
M and having observed xF, what is the value of all endogenous variables if the set of actions A is
performed”.6

4The actionability of a feature is determined based on the feature semantic and value in the factual instance.
5For simplicity, we slightly abuse notation and use sets and vectors alike, e.g., {Xi = xFi }i ⊆ X ,xF ∈ X .
6Queries such as this subsume both retrospective/subjunctive/counterfactual (“what would have been the

value of”) and prospective/indicative/predictive (“what will be the value of”) conditionals Lagnado et al.
(2013); Edgington (2014); Starr (2019), if we assume that the laws governing the world, F, are stationary.
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Figure 2: Given world model, M, intervening on X1 and/or on X2 result in different post-
manipulation models: M′1 = MA={do(X1:=a1)} corresponds to interventions only on X1 with
consequential effects on X2; M′2 = MA={do(X2:=a2)} shows the result of structural inter-
ventions only on X2 which in turn dismisses ancestral effects on this variable; and, M′3 =
MA={do(X1:=a1,X2:=a2)} is the resulting (independent world) model after intervening on both vari-
ables.

We can now better understand why assumption A1 fails: whereas δ∗ takes values in X , thus cor-
responding to a shift in the feature values, the action set A∗ is performed over the structural causal
model of the world,M, resulting not only in changes to the value of the endogenous variables, but
also to the relations between variables, captured by F. We recall that performing the actions A in a
world modelM, yields the updated world modelMA. Thus, the under-specification ofM when
generating δ∗, as in equation 2, leads to uncertainty regarding the post-intervention relations. In
other words, the optimization problem in equation 2, lacks proper handling of the consequences of
actions.7 From the point of view of actions as a structural interventions, given δ∗, an individual
seeking recourse in a world,M, may opt for one of two courses of action:

Option #1: Perform interventions only on the non-zero elements of δ∗, i.e.,
A∗ = do({Xi := xFi + δ∗i | δ∗i 6= 0}i). This setup is depicted in M′1 and M′2 of Figure 2. Due
to potential consequences of this set of interventions on those variables that were not intervened
upon (e.g., in M′1, the intervention do(X1 := a1) affects both X1 and X2), there is no guarantee
that xSCF∗ = FA∗(F−1(xF)) will correspond to a counterfactual instance. In other words, due to
unverified feature interactions when passing xSCF through hθ, it may be that hθ(xSCF) 6= hθ(x

CFE
∗ ),

and therefore A∗ fails to serve the purpose of recourse. Illustratively, A∗ may recommend too much
(too little) effort, as in Example #1 (#2) in §1. Therefore, this option is discarded.

Option #2: Perform interventions on every dimension of xF, i.e., A∗ = do({Xi := xFi + δ∗i }i)
severing all inter-variable edges (i.e., Xi ⊥⊥ Xj ∀ i 6= j). This setup is depicted inM′3 of Figure
2. By the independent world reduction, xSCF∗ = FA∗(F−1(xF)) will indeed equal xCFE∗ . However, it
assumes that non-altering interventions (i.e., Xi := xFi + 0) are feasible and incur zero cost, which
is an unrealistic assumption. For instance, as in Example #1 (#2) in §1, a variable may change
favorably (detrimentally) with respect to the output of the predictor hθ, as a result of changes to its
ancestors — performing a non-altering intervention to prevent [unpredictable] ancestral influence
and ensure recourse is itself a costly action which is not captured in existing definitions of cost.
For instance, the agriculture team in Example #2 of §1 may need to invest heavily in a greenhouse
to ensure temperature remains the same if the paddy were to be situated at a different altitude.
Therefore, this option is also discarded.

In summary, for general M, neither option is acceptable: acting on recommendations generated
from explanations can be potentially sub-optimal (Option #1 may recommend too much/too little
effort, and Option #2 does not account for the cost of non-altering interventions), or infeasible
(Option #2 may recommend non-altering interventions that are not possible). Thus, even when

7Consequences relate to the edges that are severed after an intervention, but also perhaps more importantly,
the edges that remain in the graph. While intervened variables are no longer affected by changes to their parents,
changes to intervened variables continue to consequentially affect their un-altered children.
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equipped with knowledge of causal dependencies after-the-fact, generating recommendations from
pre-computed counterfactual explanations in the manner of existing approaches is not satisfactory.

4 RECOURSE THROUGH MINIMAL INTERVENTIONS

To achieve algorithmic recourse, we seek a [minimal cost] set of actions, where intervening only
on the elements of this set will trigger predictable consequences according to our knowledge of the
world, encoded inM, and result in a counterfactual instance giving the favourable output from hθ.
Therefore, we re-formulate equation 2 as follows:

A∗ ∈ arg min
A

cost(A;xF)

s.t. hθ(x
SCF) 6= hθ(x

F)

xSCF = FA(F−1(xF))

xSCF ∈ Plausible

A ∈ Feasible ,

(3)

where A∗ ∈ A directly specifies the set of actions (i.e., structural interventions) to be performed
to achieve recourse at minimal cost, with cost(·;xF) : A × X → R+, and xSCF∗ = FA∗(F−1(xF))
denotes the resulting structural counterfactual explanation. We remark here that, while xSCF∗ is a
counterfactual explanation, it does not need to correspond to the nearest counterfactual explanation,
xCFE∗ , resulting from equation 2 (see, e.g., Example #1 of §1). We obtain a structural counterfac-
tual, xSCF = FA(F−1(xF)), by applying the abduction-action-prediction method of counterfactual
reasoning Pearl (2013) The assignment of structural counterfactual values can generally be written
as:

xSCFi = [i ∈ I] · (xFi + δi)

+ [i /∈ I] ·
(
xFi + fi(pa

SCF
i )− fi(paFi )

)
,

(4)

where we have made implicit the abduction step in previous section and replaced ai by xFi + δi to
make explicit the dependence on the factual instance. Note that equation 4 carries a natural intuition:
if variable Xi is intervened on, set it to the intervened value (i.e., ai), otherwise, offset the original
value of the variable (i.e., xFi ) by the difference in value of its structure equation given the factual and
counterfactual values of its parent (i.e., fi(paSCFi )−fi(paFi )), thus accounting for the consequences
of changing other variables on this variable.

5 CONCLUSION

Our work is concerned with algorithmic recourse, i.e., the process by which an individual can change
their situation to attain a desired outcome from a machine learning model. We showed that in their
current form, counterfactual explanations do not bring about agency for the individual to achieve
recourse. In other words, counterfactual explanations do not translate to an optimal or feasible set
of recommendations that would favourably change the prediction of hθ if acted upon. We attribute
this shortcoming primarily to: a lack of consideration of causal relations governing the world and
thus, the failure to model the consequences of actions.

To overcome this limitation, we argue for a fundamental reformulation of the recourse problem, by
directly minimizing the cost of performing consequential actions in a world governed by a set of
laws captured in a structural causal model. Our proposed formulation in equation 3, complemented
with several examples and a detailed discussion, allows for recourse through minimal interventions,
that when performed will result in a counterfactual explanation, i.e., an instance that favourably
changes the output of the model.

In future work, we will focus on overcoming the two main assumptions of our formulation: the
availability of i) the true world model,M; and ii) the predefined cost function. An immediate first
step involves learning the true world model (partially or fully) Eberhardt (2017); Malinsky & Danks
(2018); Glymour et al. (2019), and studying potential inefficiencies that may arise from partial or
imperfect knowledge of the causal model governing the world. Furthermore, while additive noise
models are used broadly used class of SCMs for modeling real-world systems, further investigation
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into the effects of confounders (non-independent noise variables), as well as cyclic graphical models
for time series data, would extend the reach of recourse to even broader settings. Secondly, future
research will involve a thorough study of potential properties that cost functions should satisfy (e.g.,
individual-based or population-based, monotonicity) as the primary means to measure the effort
endured by the individual.
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 M
Ŷ = hθ

(
{Xi}4i=1

)
Figure 3: Working example; see §A.1 for details.

A STRUCTURAL COUNTERFACTUALS

A.1 WORKING EXAMPLE

Consider the model in Figure 3, and assume that the SCM falls in the class of additive noise models
(ANM), where {Ui}4i=1 are mutually independent endogenous variables, and {fi}4i=1 are structural
(linear or nonlinear) equations.

Let xF = [xF1, x
F
2, x

F
3]T be the observed features belonging to an (factual) individual, for whom

we seek a counterfactual explanation and recommendation. Also, let I denote the set of indices
corresponding to the subset of endogenous variables that are intervened upon according to the action
set A. Then, we obtain a structural counterfactual, xSCF = FA(F−1(xF)), by applying the abduction-
action-prediction method of counterfactual reasoning Pearl (2013) as:

Step 1. Abduction uniquely determines the value of all exogenous variables given evidence, {Xi =
xFi }4i=1:

u1 = xF1,

u2 = xF2,

u3 = xF3 − f3(xF1, x
F
2),

u4 = xF4 − f4(xF3).

(5)

Step 2. Action modifies the SCM according to the hypothetical interventions, do({Xi := ai}i∈I),
yielding FA as:

X1 := [1 ∈ I] · a1 + [1 /∈ I] ·U1,

X2 := [2 ∈ I] · a2 + [2 /∈ I] ·U2,

X3 := [3 ∈ I] · a3 + [3 /∈ I] ·
(
f3(X1,X2) + U3

)
,

X4 := [4 ∈ I] · a4 + [4 /∈ I] ·
(
f4(X3) + U4

)
.

(6)

where [·] denotes the Iverson bracket.

Step 3. Prediction recursively determines the values of all endogenous variables based on the
computed exogenous variables {ui}4i=1 from Step 1 and FA from Step 2, as:

xSCF1 := [1 ∈ I] · a1 + [1 /∈ I] ·
(
u1
)
,

xSCF2 := [2 ∈ I] · a2 + [2 /∈ I] ·
(
u2
)
,

xSCF3 := [3 ∈ I] · a3 + [3 /∈ I] ·
(
f3(xSCF1 , xSCF2 ) + u3

)
,

xSCF4 := [4 ∈ I] · a4 + [4 /∈ I] ·
(
f4(xSCF3 ) + u4

)
.

(7)
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