
Under review as a conference paper at ICLR 2020

OFF-POLICY EVALUATION IN
INFINITE-HORIZON REINFORCEMENT LEARNING
WITH LATENT CONFOUNDERS

Anonymous authors
Paper under double-blind review

1 INTRODUCTION

Off-policy evaluation (OPE) in reinforcement learning (RL) considers the problem of estimating the
value (i.e., the average long-term reward) of a target policy based on data collected by following a
behavior policy. OPE is particularly important in settings where experimentation is limited, such as
healthcare and education. But, in these very same settings, observed actions are often confounded
by unobserved variables making OPE even more difficult.

In this work, we study OPE in an infinite-horizon, ergodic Markov decision process with unobserved
confounders, where states and actions can act as proxies for the unobserved confounders. We show
how, given only a latent variable model for states and actions, the policy value can be identified from
off-policy data. Our method involves two stages. In the first, we show how to use proxies to estimate
stationary distribution ratios, extending recent work on infinite-horizon OPE to the confounded set-
ting. In the second, we show optimal balancing can be combined with such learned ratios to obtain
policy value while avoiding direct modeling of reward functions. We establish theoretical guarantees
of consistency and demonstrate our method empirically.

2 PROBLEM SETTING

We consider Markov Decision Processes with Unmeasured Confounding, or MDPUC (Zhang &
Bareinboim, 2016). An MDPUC is specified by a tuple (S,A,U , PT ,R, f0), where S is the state
space, A = {1, . . . ,m} is the space of actions, U is the space of confounders, PT (s′ | s, a, u) gives
the probability of transitioning to state s′ from state s given action a and confounders u, R(s, a, u)
gives the distribution of reward given action a was taken in state s with confounders u, and f0 gives
the distribution over starting states. Note that in most cases we are only interested in the expected
reward in each configuration, so we let µa(s, u) = E[R(s, a, u)]. An important assumption we
make here is that the confounder values U at each time step are iid, which differentiates the MDPUC
setting from the more general POMDP setting. Finally, we use S′ to refer to the state succeeding
state S in a trajectory.

We assume access to N ≥ 1 trajectories of off-policy data, of lengths T1, . . . , TN . At each time
period of each trajectory we assume that we observe the state S, the action that was taken in that
state A, and the corresponding reward that was received R. Importantly, we do not observe the
corresponding confounder value U . We assume that each trajectory was logged from a common
behavior policy πb, which depends on the confounders, where πb(a | s, u) gives the probability that
πb takes action a given state s and confounders u. In addition we will frequently index our data by
concatenating the trajectories together and using indices 1, . . . , n, where n =

∑N
i=1 Ti.

Our task is to estimate the value of some evaluation policy πe, which follows the same semantics as
πb, and whose actions may optionally depend on the confounders U (for simplicity, even in the case
that its actions depend on S only, we still use the notation πe(a | s, u)). Importantly, we assume that
Markov chain of tuples (S,A,U,R, S′) is ergodic for policies πb and πe, meaning that the policies
have unique stationary distributions. We refer to these stationary distributions as fb and fe, and
denote expectations with respect to them as Eb and Ee. Then we define the value of policy πe to be

V (πe) = Ee[µA(S,U)]. (1)

1

Under review as a conference paper at ICLR 2020

In addition we will use the notation d(X) to denote the stationary density ratio under πe versus πb,
for any random variableX that is measurable with respect to (S,A,U, S′). That is, d is defined such
that for any such variable X and any function g we have Efe [g(X)] = Efb [d(X)g(X)]. Note that
this involves slight abuse of notation since the function d depends on the random variable X , but the
definition of d should be clear in context.

Finally, we assume that we have access to an oracle ϕ̂, which provides an approximation of the
posterior distribution of U given S, A, and S′. Such an oracle can be implemented using existing
inference algorithms for probabilistic models with latent variables. Note that by the MDPUC struc-
ture (Figure 1) U is conditionally indpedentant of all other states and actions given this triplet. It is
assumed that ϕ̂ allows for approximate sampling of U values from the posterior (in the continuous
U case), or defines the approximate posterior (in the discrete U case).

Figure 1: Graphical representation of MDPUC in which action selection, state transition, and reward
value are confounded.

S1 S2 S3 S4

A1

U1 U2 U3

A2 A3R1 R2 R3

3 METHODOLOGY

3.1 WEIGHTED ESTIMATOR FOR POLICY VALUE

We can first note that the policy value we are estimating is given by

V (πe) = Ee[µA(S,U)]

=

m∑
a=1

Ee[πe(a | S,U)µa(S,U)]

=

m∑
a=1

Eb[d(S)πe(a | S,U)µa(S,U)],

where the last step follows from the observation that d(S,U) = d(S), since the conditional distri-
bution of U given S is the same under each policy. Next, given any weighting random variable W
measurable in S, A, and S′, the expected value of the corresponding weighted estimator is given by

Eb[WR] = Eb[WµA(S,U)]

=

m∑
a=1

Eb[WδAaµa(S,U)].

Now consider the weighted estimator for V (πe) given by τ̂W =
∑n
i=1WiRi, where {R1, . . . , Rn}

is the set of observed rewards in ourN trajectories. Then the above suggests that we can approximate
the bias of evaluation by (1/n)

∑n
i=1

∑m
a=1 fiaE[µa(Si, Ui) | Si, Ai, S′i], where fia = WiδAia −

d(Si)πe(a | Si, Ui). Furthermore, given that our data comes from an ergodic Markov Chain, it
is intuitive that we should be able to upper bound the variance of this estimator by C‖W‖2 for
some constant C, where ‖ · ‖ denotes the Euclidean norm. These intuitions lead us to the following
theorem:
Theorem 1 (MSE Upper Bound). For any vector of weights W and vector of functions g =
g1, . . . , gm, define

J(W, g) =

(
1

n

n∑
i=1

m∑
a=1

fiaE[ga(Si, Ui) | Si, Ai, S′i]

)2

+ C‖W‖2. (2)

2

Under review as a conference paper at ICLR 2020

Then if C is sufficiently large and J(W,µ) = Op(1/n), where µ = µ1, . . . , µm are the true mean
reward functions, it follows that τ̂W = V (πe) +Op(1/

√
n).

The proof shares a similar structure of that of the corresponding theorem in Bennett & Kallus (2019)
for confounded contextual bandits. The main difference is that we need to appeal to the Markov
Chain central limit theorem (CLT) rather than the regular CLT since by assumption our data comes
from an ergodic Markov chain. We refer the reader to the corresponding proof for details.

This suggests finding weights W for weighted evaluation that minimize supg∈G J(W, g) for some
vector-valued function class G. It follows easily from the above that if µ ∈ G and we can mini-
mize this upper bound uniformly over G at an O(1/n) rate, then this estimator gives Op(1/

√
n)-

consistency for V (πe). We can also note that if G is a class of functions with norm at most γ, then
the choice of C is implicit from the choice of γ (since scaling up all functions ga by a factor of λ
gives an equivalent optimization problem to scaling down C by a factor of λ2), so we can arbitrarily
fix C or γ and perform hyperparameter optimization over the other.

In our experiments, we choose W using this adversarial estimator, with the function class G defined
by the norm ‖g‖2 =

∑
a ‖ga‖K , where ‖ · ‖K is the norm for the RKHS with kernel K. As in

Bennett & Kallus (2019), we can show that this estimator is given by

argmin
W

 1

n2

∑
i,j,a

E[fiaf̃jaK((Ui, Si), (Ũj , Sj)) | Si, Ai, S′i, Sj , Aj , S′j]

+ C‖W‖2,

where Ũi denotes a shadow variable iid to Ui given Si, Ai, S′i. This objective is approximated using
ϕ̂, which gives a QP to be solved. The exact QP will be described in the final version of our paper.

3.2 LEARNING STATIONARY DENSITY RATIO

The above algorithm for learning evaluation weights requires knowing the state stationary density
ratio d(S). We describe here a conditional moment formulation for learning this function. First,
analogously to Liu et al. (2018), this ratio must satisfy the conditional moment restriction:

d(S′) = Eb[d(S)β(S,A, S′) | S′],

where β(S,A, S′) = Eπb
[πe(A | S,U)/πb(A | S,U) | S,A, S′]. This implies that for every

measurable function h we must have Eb[(d(s)β(S,A, S′)− d(S′))h(S′)] = 0. In addition the ratio
must satisfy the trivial moment restriction Eb[d(S)] = 0. As in Liu et al. (2018) it is easy to argue
that d is the unique function satisfying the above moment restrictions.

Now Bennett et al. (2019) has previously provided an efficient GMM-based formulation for solv-
ing such conditional moment problems efficiently using machine learning, which we can adapt to
this learning problem. Specifically, we let D and H both be RKHS function classes, and define
Mi(d, f, c, c

′) = (β̂id(Si)− d(S′i))f(S′i) + c(d(Si)− 1) + c′(d(S′i)− 1), where β̂i is an estimate
of β(Si, Ai, S′i) (obtained by using ϕ̂). Then our estimator for d is given by

d̂ = argmin
d∈D

sup
h∈H,‖c‖≤λ,‖c′‖≤λ

1

n

n∑
i=1

(
Mi(d, f, c, c

′)− 1

4
Mi(d̃, f, c, c

′)2
)
,

where d̃ is some prior estimate of d. In practice we solve the above iteratively until convergence,
each time using the previous estimate d̂ as d̃, with our initial estimate given by d̂(s) = 1 ∀s. Given
D and H are RKHS function classes this optimization problem has a closed form solution, which
will be described in the final version of our paper.

4 EXPERIMENTAL RESULTS

In this section, we empirically demonstrate our method. We consider the C-ModelWin environment
(Fig. 2) that is a confounded variant of the ModelWin environment (Thomas & Brunskill, 2016).
C-Modelwin has 3 states and 2 actions. At each step, there is a confounder U that affects action
selection, reward value, and state transition. The agent always begins in S0. At step i, the agent

3

Under review as a conference paper at ICLR 2020

s
0

s
1

s
2

a
0

a
1

r
1

r
2

U

Figure 2: (Left) The C-ModelWin problem. (Right) OPE results with increasing data size.

chooses between two actions A0 and A1 with the probability of 1−π−Ui and π+Ui, respectively.
π is a parameter that is distinct for behavior and evaluation policies. In our experiments, π = 0.7 for
the behavior policy and and π = 0.1 for the evaluation policy. In addition, Uis are iid variables that
could be 0.1 and 0.2 with probabilities of 0.3 and 0.7, respectively. At step i, if the agent is at S0

and chooses A0, then with the probability of 0.7 + Ui and 0.3 − Ui it makes a transition to S1 and
S2 and receives a zero reward. If it chooses A1, then with the probability of 0.3− Ui and 0.7 + Ui
it makes a transition to S1 and S2 and receives a zero reward. When the agent makes a transition
from S1 to S0, it receives a reward of 10 + 20×Ui and when it makes a transition from S2 to S0, it
receives a reward of −10− 20× Ui.
We compare our method with the direct estimation method. In this approach, we impute U values
for each data point by sampling from the posterior probability ϕ̂(.|S,A, S′). We use this dataset to
fit a regression model for the mean reward µ(.) given S, A, and U . Since C-ModelWin is a discrete
environment, we can simply fit this regression model using tabular methods. We can then write the
predicted reward as (1/n)

∑n
i=1 d(Si)

∑
u ϕ̂(u|Si, Ai, S′i)

∑
a πe(a|Si, u)µ(Si, a, u).

Figure 2 compares the estimates of our method with the direct estimator and the true on-policy
reward. Based on this figure, as we have more trajectories both bias and variance of our estimator
converge to zero. On the other hand, although the variance of the direct estimator decreases, its bias
does not vanish. Therefore, as we can see the estimate of our method gets close to the true on-policy
estimate while this does not hold for the direct estimator. It is worth mentioning that while the true
on-policy reward in this problem is 3.55, simply averaging off-policy rewards (i.e., having a naive
estimator) gives the estimate of 0.29 which is significantly far from the true value and shows the
impact of having confounders.

REFERENCES

Andrew Bennett and Nathan Kallus. Policy evaluation with latent confounders via optimal balance.
In Advances in Neural Information Processing Systems, pp. 4827–4837, 2019.

Andrew Bennett, Nathan Kallus, and Tobias Schnabel. Deep generalized method of moments for
instrumental variable analysis. In Advances in Neural Information Processing Systems, pp. 3559–
3569, 2019.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-
horizon off-policy estimation. In Advances in Neural Information Processing Systems, pp. 5356–
5366, 2018.

Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In Proceedings of the 33rd International Conference on Machine Learning (ICML), pp.
2139–2148, 2016.

Junzhe Zhang and Elias Bareinboim. Markov decision processes with unobserved confounders: A
causal approach. Technical Report R-23, Columbia CausalAI Laboratory, 2016.

4

	Introduction
	Problem Setting
	Methodology
	Weighted Estimator for Policy Value
	Learning Stationary Density Ratio

	Experimental Results

