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ABSTRACT

Neural networks have achieved astonishing success in many machine learning ar-
eas by relying on the assumption of independent and identically distributed (iid)
data in training and testing settings. In particular, these methods rely on learning
correlations from the data and cannot per se identify causal links. In many settings
of interest, e.g. domain adaptation, transfer learning, this is a problem as the iid
assumption does not hold. On the other hand, causal models efficiently and com-
pactly encode the data-generating process under all possible interventions. Of-
ten these models are represented as Bayesian networks and learning them scales
poorly with the number of variables. Furthermore, these approaches cannot lever-
age previously learned knowledge to help with learning new causal models. To
tackle these challenges, we propose a novel framework called causal relational
networks (CRN) for learning causal models using neural networks. Furthermore,
we propose to use a decoding-based metric for evaluation. We test our method on
synthetic data achieving high accuracy and quick adaptation to previously unseen
causal models.

1 INTRODUCTION

While neural networks have very powerful learning capabilities and have achieved impressive em-
pirical success on many tasks across a wide range of domains, e.g. computer vision (Krizhevsky
et al., 2012; |Stimonyan & Zissermanl, 2014} |Szegedy et al., 2015} [He et al., 2016), natural language
processing (Sercu et al.l [2016; |Child et al., [2019) and reinforcement learning (Silver et al., [2016j
Moravcik et al.||2017), their success crucially hinges on the assumption of independently and iden-
tically distributed (iid) data. Furthermore, most machine learning methods, especially those relying
on neural networks learn based on associations present in the data but do not distinguish between
correlation and causation. This is a problem when the iid assumption does not hold, for example in
domain adaptation, transfer learning and meta-learning (Dasgupta et al.,|2019; |[Bengio et al.| 2019;
Ke et al., 2019). In order to tackle these domains, and to correctly handle interventional data, we
need to capture the causal mechanisms in the underlying generative process. Thus, learning causal
models is an important step towards expanding the abilities of our algorithms.

In this paper, we focus on learning causal models from interventional data. Previous work in this
area often focuses on learning representations for causal models in terms of Bayesian networks,
e.g. (Heckerman et al., [1995). While such approaches provide an easily interpretable output, they
rely on iterating over all possible graph structures and thus scale poorly as the number of possible
graphs scales super exponentially with the number of variables. We propose a paradigm shift away
from learning Bayesian networks to learning continuous representations of causal graphs using deep
neural networks. In particular, we examine a meta-learning setup where learning is divided into
episodes. At the beginning of each episode, a causal graph that governs the data generation during
that episode is drawn. At every time step ¢, ¢ < k, our algorithm receives the node values of a
sample under intervention. Specifically, the intervention is picked at random, and the algorithm
inputs both what variable the intervention affected, the value of the intervention, as well as the
values consequently assumed by the remaining variables. Thus, during an episode of length k our
algorithm observes k samples from the underlying causal graph under different interventions. To
facilitate learning, we ask our model to predict outcomes of interventions at every time step. Note
that interventions in our framework correspond to hard interventions, i.e. an intervention constitutes
a hard assignment of a variable to a specific value. In order to enable learning of causal graphs in
this setup, we propose a novel neural network architecture that efficiently learns to encode causal
graphs in a compact, continuous representation.



When learning causal graphs explicitly as discrete structures, it is straightforward to evaluate accu-
racy by counting how many of the inferred edges match the ground truth. Our implicit, continuous
representation of a causal graph cannot be directly be compared against the ground truth. One pos-
sibility is to compare the predictions of node values under all possible interventions, rather than
comparing the edge structure. Unfortunately, comparing node predictions scales poorly and would
be prohibitively expensive even for medium-sized graphs. Therefore, we instead learn a decoder
from the continuous representation into a graph, and then measure its edge accuracy.

The main contribution of this paper is to introduce a new framework for learning to learn causal
discovery models using continuous representations via unsupervised losses. We also introduce a
relational encoding-decoding network that performs well in this task relative to a natural baseline.

2 RELATED WORK

Most approaches to learning causal models, i.e. causal induction, can be grouped into three cate-
gories — constraint-based, score-based and asymmetry-based methods. Constraint-based methods
try to infer the a directed acyclic graph (representing the causal structure) by analyzing conditional
independencies in the data (Spirtes et al., 20005 Sun et al.;[2007; Zhang et al.| [2011). These methods
are mathematically well grounded, but their performance is critically dependent on the conditional
independence methodology used and sensitive to the amount of data available. Score-based meth-
ods search the space of all DAGs by scoring the data fit using a predefined function. Examples of
this approach include (Chickering, 2002} Tsamardinos et al.| 2006} (Goudet et al., 2017). Unfortu-
nately, this class of methods does not scale well as the search space grows super-exponentially with
the number of variables. Furthermore, there are not principled ways of selecting problem-specific
scoring functions and search heuristics. Asymmetry-based methods assume that there is an inherent
asymmetry between cause and effect, and try to infer the underlying causal structure by measuring
this asymmetry. Examples of this class of methods includes (Shimizu et al., [2006; Hoyer et al.,
2009; Daniusis et al., 2012; Budhathoki & Vreekenl, 2017; [Mitrovic et al.l [2018). The work of
(Peters et al., 2016) and use invariance

While most causal induction deal with purely observational data, a number of methods has been
proposed for the setting when interventional data is available. For example, (Heckerman et al.,
1995} |Cooper & Yool [1999) have proposed score-based methods that explicitly take into account
interventional data. The works from (Peters et al., 2016) and (Heinze-Deml et al.l 2018)) exploit
invariances across enviroments to learn the causal structure. However, it is difficult to scale to large
size graphs due to the super exponetial search through all possible graphs.Furthermore, there has
been extensive research around the selecting informative interventions for causal discovery, e.g.
(He & Geng, [2008; [Kocaoglu et al., [2017; Zhu & Chen, 2019). The work in (Bengio et al., 2019)
proposes a meta-learning framework for learning causal models from interventional data. However,
it is also non-trivial to scale the proposed method in (Bengio et al.,|2019) to any reasonable sized
graphs and the experiments were performed on models with 2 variables only. The work of (Ke et al.,
2019) extends that of (Bengio et al.,[2019) to the case of larger variable graphs. However, each meta-
sample is generated from an interventional distribution based on a single ground-truth structured
causal model (SCM). Hence, the model learns only a single SCM at a time. This is in comparison
with our model, which could adapt and learn a completely new SCM within each meta-sample. Most
similar to our work, (Dasgupta et al.,2019) uses meta-learning to learn to make predictions under
interventions that suggest (but do not prove) that some causal reasoning is occurring. The difference
is that their approach does not induce a causal graph, neither explicitly nor via a decoding, thus it
cannot be used for general causal discovery, but merely to make predictions of variable values.

3 CAUSAL RELATIONAL NETWORKS

In this paper, we propose a general framework for learning causal models from intervention data
leveraging the power of neural networks. Unlike most previous methods that learn Bayesian network
structure, we employ continuous representations to represent causal graphs. Furthermore, we train
our model on many distinct causal graphs which allows it to learn new causal graphs very quickly.
In order to evaluate the effectiveness of our method, we measure the ability of our model to predict
the outcome of interventions as well as decode the structure of the underlying causal Bayes network.



3.1 PROBLEM FORMULATION

We propose a meta-learning setup to learn causal graphs. Here, training occurs in episodes, with
a single ground-truth causal graph for the duration of each episode. Episodes have a fixed length
k and at each time step the learner receives a sample of node values from the causal graph. Thus,
in each episode, we first draw a new causal graph G, followed by generating k& samples from this
graph under random interventions. The resulting intervention samples x are fed into the model
sequentially. At each time step ¢, the model is asked to predict the intervention outcome given the
intervention (which variable has been intervened on and what was the value of the intervention).

In order to evaluate the performance of our model, we cannot directly compare the inferred graph
structure to the ground truth as is usually done when learning Bayesian networks given that we have a
continuous representation that implicitly encodes the underlying causal graph. Given that evaluating
the predictions under all possible interventions does not scale to large graphs and state spaces, we
propose to use a decoding-based evaluation metric for continuous representations of causal graphs,
similar to (Gregor et al.L[2019). Specifically, we propose to evaluate if the discrete graph structure is
encoded in the continuous representation by training a neural network to decode it. Thus, at every
time step ¢, we feed the hidden state of our model into a decoder trained to output the right causal
graph. Note that we do not pass gradients from the ground-truth supervision signal back into the
decoder.

3.2 MODEL DESCRIPTION

Our learning architecture named causal relational networks
comprises three modules shown in Figure First, the rela-
tional encoder-decoder models the observed data through a la-
1 1 1 tent representation and serves to preserve the relationship be-
- ~+ tween variables. Second, the sequence model computes the
belief state at every time step ¢, such that the belief state at
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Figure 1: Causal relational model Relational encoder-decoder. At time step ¢, the encoder in-
with all components. put z! is a vector length n + 1, where n is the number of vari-
ables in the ground-truth causal graph. The first element speci-
fies what variable was intervened upon, by providing the index
of the variable. The remaining n elements in the vector contain the sample from the intervened-on
graph.

In our initial experiments, we have observed that a fully connected encoder (i.e. using just an
LSTM, in section[4.3) does not manage to learn the causal relationships between variables. To tackle
this, we propose a novel encoder architecture inspired by relational networks (Santoro et al.,[2018).
In particular, this architecture more appropriately models causal relationships between variables
because it is trained to predict, given a particular variable in the sample, the value of all other
variables.

Within an episode, let 2}, 2t , ..., 2!, denote the samples from the causal graph under different inter-
ventions, with xﬁ the value of the i-th variable in the ¢-th sample. For every variable, we instantiate
a feedforward neural network that takes the values of this variable as input. Note that there are n
MLPs in the model that are identical in shape but do not share parameters (see Figure[2)). The task
of each MLP is to predict the value of the remaining variables (i.e. output size n — 1). Specifically,
let fi, be the MLP that takes as input x, i.e. Zo, Z1, ...T% ki = fi(Ti).



Using the intuition that a variable can usually better predict direct parents or children than uncon-
nected variables, we augment our architecture with an attention model. Thus, for a given variable
xf the MLP returns n — 1 predictions (for all xy, 1;), which are fed into the attention MLP (see
Figure . This then outputs attention weight wf &> With k& denoting the prediction of variable X}

from fx. Next, we use the attention weights to compute the intermediate prediction O}, where this
prediction is being passed through 2 separate MLPs. The first MLP outputs the final predictions of
the variable X!. The input to the second MLP is a concatenation of O} where 0 < i < n to form O".
The second MLP then outputs the encoding r¢ which is passed to the sequence model. Taking all of
this together, the MLPs together with the attention weight encode the relationship between a single
variable and the rest of the causal graph. There are 2 outputs for the encoder, one that predicts the
intervention X, ..., X! | and the other one 7 that is passed to the sequence model that is used for
decoding the causal graph.

Sequence model. We use a sequence model to accumulate in-
formation produced by the encoder and update the belief state %, %, %, g
of the model. In our setup, we use a simple cumulative sum-

mation operator that adds current information to already accu-

mulated information. Specifically, we take r* that encode the
observed data using the Relational encoder-decoder. Then the

hidden state h' of the sequence model at time ¢ is updated as 'nemion‘| 'ttemion‘| hne?niori|
htt1 = h* 4 7t This simple additive update guarantees that the M U L
final representation h! is invariant with respect to permutations

in the order of presentation of the data points. A more complex

recurrent model, such as LSTM ((Hochreiter & Schmidhuber, EXAREEARER N
1997)), could also be used but it is not trivial to preserve permu-

tation invariance in this case.

Graph decoder. Having computed the belief state k¢, we use ML e ML

a LSTM (Hochreiter & Schmidhuber, (1997) conditioned on h? [ R R R
to predict the adjacency matrix of the the causal graph. We also T T T

ensure that no gradient with supervision signal are passed back

into the other components of the model. X x xt

4 EXPERIMENTS Figure 2: Relational encoder

model for inputs with 3 vari-

4.1 BINARY CAUSAL BAYESIAN NETWORKS ables.

We explore the setting of binary Bayesian networks with all variables observed such that there is
no confounder. We focus on this setting as a proof of concept for our methodology; extensions to
categorical Bayesian networks are straightforward. The ground-truth model defined a joint p(X =
x) =[], (Xs = z; | x4, w;) is formulated as follows,

P (Xl = | T <iy wl) = Slngld wzﬁ Z Uj,iMj,ixj + bl 5 (1)

J<i

where w; € {0, 1} is an intervention mask sampled randomly (w; = 0 corresponds to an intervention
replacing the node distribution by an uniform distribution), U; ; € {—1, 1} is the coupling potential,
bi € {1 — >, Mji,>°;; Mji — 1} is an integer potential bias, M; ; € {0, 1} is the connectivity
mask representing the Bayesian net causal graph, and 8 = 5 is a concentration parameter. This
model simulates a Bayesian network over binary variables with randomized interventions. It can be
thought of as a soft random Boolean network. For the ease of sampling, we restrict the ground-truth
model to a directed acylic graph (DAG). We have fixed the number of variables in the graph to 5 for
the experiments.

4.2 OUR MODEL

We perform the same hyper-parameter search for our baselines as well as our model. We use a batch
size of 8, learning rate of 0.0002, all models are trained with the Adam optimizer (Kingma & Ba,
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Figure 3: Accuracy for edge probability over the course of the episode, binned by different stages
of training, for a) our causal relational network (CRN) model, and b) CRN with supervised graph
learning.
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Figure 4: Comparing performance for all models. a) Accuracy of edge prediction after seeing the
entire episode of samples, over the course of training. b) Edge accuracy over the course of the
episode, averaged over 50 episodes at the end of training. ¢) Predicted causal graph (adjacency ma-
trix format) vs. ground-truth graph for the (upper) LSTM baseline and (lower) CRN. d) Histogram
of predicted edge weights at end of episode for ground-truth edges of weight = 1 vs. weight = 0,
CRN model. CRN = Causal relational network; zero belief = belief state set to 0.

2014) for 20000 iterations. For the relational encoder, we set the MLP to have 2 hidden layers of
size 128 and 64 with a ReLU (Nair & Hinton, 2010) in between. The relational encoder final output
size is 64. The graph decoder LSTM has a hidden state size of 128.

We evaluate our model on the accuracy of the decoded graph with respect to the ground-truth graph.
The accuracy is defined to be the percentage of decoded edges that align with the ground-truth edge.
The edge is said to be aligned with the ground-truth edge if both of the argmax of the Bernoulli
distribution over the learned edge and the ground-truth edge matches.

The edge accuracy for our model across the course of an episode, for different stages of training, is
shown in Figure Bp. The model has learned to extract information about the causal graph structure
from intervention samples, reflected in the improvements in edge accuracy as the model observes
more intervention data from the causal graph. In the beginning of the episode, the model only knows
the underlying causal graph is a DAG. As the model observes more intervention samples from the
same graph, it can quickly infer underlying causal graph. Note that the edge accuracy also improves
across training iterations.

4.3 BASELINES

There are 3 main components to our model as shown in Figure[I] First, we evaluate our encoder-
decoder model against an LSTM with a naive fully-connected MLP. We then evaluate the amount of
performance gain the model could achieve by receiving supervision signal from our graph decoder.
Lastly, in order to verify that the information for the conditional graph decoder for decoding the
graph is indeed contained in our model, we compare the performance of our model to one with zero
information in its input to the graph decoder. The sequence model that accumulates information



across time is fairly straightforward and hence we have not performed comparisons against this
component.

LSTM baseline. Our model uses a relatively sophisticated relational network to extract information
in the input. In order to verify the necessity of this component, we compare our encoder to a LSTM
with naive fully connected feed-forward neural network (MLP). For simplicity, we call this the
LSTM baseline. For this baseline, we no longer need a decoder as the encoder-decoder could just be
an identity model. As there are no decoders, the baseline is missing the unsupervised learning signal.
To compensate for this, we pass the gradients from the supervised graph decoder to the encoder. The
baseline model has an easier job, since it could learn directly from supervision signal. Interestingly,
as shown in Figure ] though the baseline model has an easier task, the edge prediction accuracy is
only around 70% throughout training as compared to the 90% reached by our model as shown in
Figure ] The baseline model neither learns within an episode (as it observes more samples), nor
does it learn with more training.

Supervised graph learning. We next evaluate the amount of performance gain the model gets
by receiving supervision signal from the graph decoder. This is achieved by removing the stop
gradient from the belief state that is passed in as inputs to the graph decoder. The results are shown
in Figure Bp. The model with supervision signal achieved 95% accuracy as compared to the 90%
achieved by the unsupervised model.

Zero belief state baseline. Lastly, we verify that the belief state in our model contains useful
information for decoding the structured causal graph. This baseline uses the same relational encoder-
decoder and graph decoder from our original model; the only difference is that the belief state is set
to zero. If this baseline could also learn to decode the structured causal graph, it would indicate that
it was not the information in the belief state that helped to decode the structured causal graph, it was
rather the graph decoder itself. Figure 4] shows that the decoder was not in fact able to decode the
causal graph structure. The accuracy remains around and below 60% throughout training compared
to the 90% that our model achieved at the end of training (Figure[3h), indicating that the belief state
was crucial to decoding the causal graph.

5 CONCLUSION

In this paper, we presented a new framework for learning causal models using neural networks. In
particular, we have introduced a novel neural architecture, causal relational networks, and proposed
to use a decoding-based metric for evaluation. We have tested our methodology on synthetic data
and have shown that it can accurately learn causal structures. Furthermore, we have shown that
causal relational networks can very quickly learn new causal models.
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