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ABSTRACT

Causal learning plays an important role in decision-making, especially in fields
such as healthcare wherein interventions depend on the underlying causal factors.
For example, there are antiviral drugs for influenza but not other viral respira-
tory infections even though the same symptoms may manifest; highlighting the
difference in interventions based on the causal etiology. Functional causal dis-
covery methods can capture the underlying causal relations between random vari-
ables, in contrast to structure discovery methods which produce multiple causal
graphs in the Markov equivalence class, failing to identify a unique graph. Func-
tional Causal Models (FCMs) also can play an important role in unsupervised
domain adaptation settings, by learning robust causal relationships from source
environments for use in a target environment. Moreover, a Bayesian approach to
functional causal discovery can help in quantifying associated uncertainties with
causal relations given that uncertainty can arise due to distribution shift across
environments. Accordingly, here we posit a multi-environment functional causal
model which uses Gaussian processes to learn the functional causal form while
exploiting the property that the residuals remain invariant across environments, to
capture the true causal parents. We show initial results on multivariate synthetic
data as well as real world cause-effect pairs.

1 INTRODUCTION

Healthcare data is often subject to differences across environments due to issues such as differences
in measurement conventions across different provider or hospital sites, or changes in policies over
time (Ghassemi et al., 2018]). In the presence of such differences, learning from data across multiple
environments plays a critical role to strengthen understanding of the underlying causal relations.
For example, it has been shown that treatment policies for sepsis can be influenced by environment-
specific factors such as severity which have been found to affect mortality rates, however this could
be averted by being able to discover and treat the underlying cause in a way that is unbiased by
environment specific policies (Esteban et al., 2007). Hence, it can be beneficial to incorporate
information from multiple environments to learn causal relations. Given observational data from
multiple source environments, we aim to learn the functional causal form which can then be used
for improved decision making in a target environment. We first discuss the advances in structural
and functional learning and then present an initial implementation of multi-environment functional
causal models using Gaussian processes.

The healthcare community typically relies on knowledge graphs for understanding causal structure
(Nordon et al.| 2019; Rotmensch et al.,[2017). The advance of electronic health records has enabled
empirical learning of structural causal graphs; approaches generally focus on pruning edges in exist-
ing knowledge graphs based on the co-occurrence of symptoms and diseases (Nordon et al., [2019)
and using parametric methods to learn causal relations under the assumption of a bipartite graph
Chen et al.[(2019). Other approaches to learning causal structure focus on conditional independence
test based algorithms like P and FCI (Fast Causal Inference) (Spirtes et al.,[2000) that recover the
causal structure under a Markov Equivalence class. As Markov Equivalence classes contain multiple
graphs these structure discovery algorithms may not be able to identify all the edges in the graph
and cannot determine a single unique causal graph explaining the functional causal form between
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the random variables. However, FCMs can identify the causal direction between variables as well
as capture the functional form in multivariate settings.

In the two variable setting, work has shown that the causal direction is identifiable under outcome-
dependent selection bias with the constraint that the noise term is non-Gaussian as identified by
Zhang et al.| (2016). For the multivariate setting the functional causal model has been identified
under linearity assumptions in methods such as LinGAM and using Additive Noise Models (ANM)
(Shimizu et al.| 2006} [Peters et al |2014). A deep learning approach to causal discovery compares
the maximum mean discrepancy (MMD) between the observational data and that generated by a
parametric generative network to learn the FCM under multivariate settings (Goudet et al., 2017)).
Since the search space is super-exponential in the number of random variables, the probable struc-
tures are restricted via knowledge of the skeleton structure of the causal graph. To-date, methods
such as the above have not leveraged information from multiple environments, which limits the
application of causal relations to an unknown target environment. Accordingly, here we propose
an approach to learn the functional causal model from multiple environments. In order to prevent
capture of any spurious correlations under multiple environments 1) we adopt a Bayesian approach,
restricting the priors over the graph structure as well as their associated parameters (Heckerman,
1995} Heckerman et al., [2006)); and 2) the decision to accept the causal parents of a random variable
is based on the predictive variance of the residuals across multiple source environments. We ac-
complish this via a Gaussian process based method to capture the FCM via the causal parents of the
outcome of interest. We show that proposed approach is able to capture the functional form under
the multivariate non-linear setting as well as determine the direction between the cause and effect for
two random variables. The initial work improves the marginal likelihood in the target environment
over a non-causal model.

2 BACKGROUND AND NOTATION

We consider our data-generating process to be characterized by a Structural Causal Model
(SCM) as introduced by [Pearl et al| (2009) over a set of d real-valued observed variables X =
{X1, Xo, ..., X4q}. We assume that the corresponding (data-generating) causal graph G is a directed
acyclic graph (DAG) with the functional form between the variable X; and its causal parents PaiG
captured by an additive noise model (ANM) (Hoyer et al., 2009) represented by Equation

X; = fi(Pa¥) + ¢, i=(1,2,.,d) (1)

The causal parents Pa; are factorized according to the causal graph G in accordance with the causal
structure.
P(X1, X5, X4 |G) =[] P(Xi|Paf) )
i€{1,2,....,d}
Here, we are interested in learning the structure of the local causal parents of an outcome of interest,
the effect (F), as well as the functional form.

e Structure modularity The prior P(G) can be written in the form: P(G) o< [, p(X;, Pa¥)

That is, the prior decomposes into a product with a term for each family (node and its causal parents)
in G where p(X;, PaZ-G) represents the joint distribution of node X; and it’s causal parents Pa;. This
implies that the choices of the causal parents for the different nodes is independent a priori. The

functional form between X; and its causal parents PalG represented by Equationis used to define
functional modularity which states that the functional form for a particular variable is only dependent
on its causal parents and independent of any other nodes a priori.

o Functional modularity Let G and G’ be two graphs in which Pal = PaiG' (we do not
restrict the parents of X; to be the same across the two graphs) then

FE(Xi | Paf) = fE(X; | Pal’)
2.1 CAUSAL GAUSSIAN PROCESSES

Consider a set of causal parent variables Pa;. We want to model a prior over the variable X; which
we believe to be a function of its causal parents Pa,;. Formally, a stochastic process over Pa; is a
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function that assigns to each p € Pa; a random variable X, (p). The process is termed as a Gaussian
Process (GP) if for each finite set of values Pa;, the distribution over the corresponding random
variables X;(p) = {1, z2, ...z ) for N samples is a multivariate normal distribution.

We can write f ~ GP(m, k) to denote that the process f(x) is a GP with mean m and covariance
function k. The joint distribution of X is therefore:

where K is the covariance matrix defined over the parents of the node X; (Pa;), o represents the
noise associated with X; and Z is the normalizing constant. Further, we define the score; p (X;, Pa;)
to be the conditional score of P(X; | PaiG) for a graph . We thus want to maximize the score,
in turn finding the local graph structure G for a node X; and its parents PaiG that maximizes the
likelihood of the data D = {x;,., pi,.n t Where p; C { X}, | k # i}; recovering the functional form.
The score p (X;, Pa;) is defined as follows:

1
p(X;,Pa; | D,G) = (21)" % |Kpa, | Zexp <2XiTK1§;iXi> (4)

To find the maximum score we need to iterate over all the possible graph structures which for d
variables will be 2¢~1. After performing the search over all the possible graph structures G' € G, the
graph G with the maximum score represented by Equation [5] provides the potential causal parents
Pa¢ of the variable X;.
X;,Pa; | D,G 5
max p (X;, Pa | ) o)

3 LEARNING THE FUNCTIONAL FORM ACROSS MULTIPLE ENVIRONMENTS

While Equation [5] provides the probable causal parents of E, we want to ensure that it is captures
the functional form across multiple environments. The predictive variance of the residuals across
the different environments e;, = {ey, eq, ... } is used to determine validity of the functional causal
form (Ghassami et al., 2017)). The functional form (f;) between variables remains the same across
the environments while the independent noises (¢;) for variables X; can change across the envi-
ronments. The change in noise across environment can reflect differences in measurement of the
variables as well as covariate shifts across the environments, common issues in areas such as health-
care (Mhasawade et al., |2019). Here we make a sound assumption that the noise is independent of
the causal parents represented in Equation |1} Accordingly, E[(E — f(C))?] = E[(E — f7(C))?]
where F represents the effect and C represents the causal parents of F. The predictive vari-
ance of the gaussian process for environment e’ will be equal to the predictive variance of the
gaussian process for environment e/ whereas for the reverse direction this will not hold true,
E[(C — fY(E))?] # E[(C— f/(E))?. The predictive variance of the posterior of the Gaussian
process for the environment e can be obtained from the squared residuals as (y* — f(x'))? where
f#(z) is the posterior mean of the G'P in environment e’. For causal parents the G P conditional
posterior will collapse to the true functional form between the variable and its causal parents, which
will be reflected in the residual of the posterior predictive distribution. Residual variances across
environments can then be compared using an F-test to determine the stable causal parentsE]

4 EXPERIMENTS AND DISCUSSION

4.1 REAL DATA: CAUSE-EFFECT PAIRS

First, we looked at cause-effect pairs from real datasets (http://webdav.tuebingen.mpg.
de/cause-effect/). We selected datasets which are likely to suffer from bias according to
commonsense or background knowledge as was done in (Zhang et al.| 2016); we selected pairs
1, 2, 25 and 33. For each dataset we held out 10% as the target and divide the remaining into
two source environments. We add noise to the target environment data to represent bias under

The F-test can be used to compare two sample variances to determine if the differences between the two
are due dataset shift or due to some inherent measurement noise.


http://webdav.tuebingen.mpg.de/cause-effect/
http://webdav.tuebingen.mpg.de/cause-effect/

Under review as a conference paper at ICLR 2020

Residuals
Dataset Causal GP LinGAM
3—_ giusa' GP Pair1 0014 +0.015 1.462 4+ 0.733
34 Pair 2 0.081 £0.001 3.977 £1.010

Pair25 0.104 +0.009  4.535 4+ 0.945
Pair 33 0.062 + 0.001 2.061 + 1.700

Marginal Likelihood (Diff)

Pair 1 5.440 £ 0.981 -
Pair 2 3.542 + 0.742 -
Pair25 4.091 + 1.002 -
Pair 33 2.862 + 0.331 -

N

Marginal likelihood
=

|

(b) Residual obtained from Causal GP and
LinGAM methods, difference in marginal likeli-
hood between the causal and non causal direction

2 3 4 5 6
Number of causal parents

(a) Marginal likelihood in the target environment with produced by Causal GP (cannot be evaluated for
increasing number of causal parents reported over 10 LinGAM as it is a parametric model) in target en-
runs. vironment. Values are reported over 10 runs

(avg £ std.dev).

Figure 1: Preliminary results on synthetic and real datasets.

a distribution shift. We then fit a Gaussian process in both directions and compare the residual
invariances to determine the causal direction. For the true causal direction the marginal likelihood
should be greater as compared to the non-causal direction. Also, residuals in the true causal direction
should be lower than those in the non-causal direction. We confirmed the marginal likelihood was
larger for the causal direction using our method (Table[Ib)) for each of the four datasets, and we also
report residuals in the target environment for all the pairs along with a comparison to the standard
LinGAM method (Shimizu et al.,[2006).

4.2 MULTIVARIATE FUNCTIONAL CAUSAL MODEL LEARNING

We explored performance of our method on graphs with increasing numbers of causal parents. Be-
cause increasing the number of causal parents exponentially increases the possible graph struc-
tures to be explored, based on computational time constraints we explored settings including up
to six causal parents. However, the graph includes a total of eight nodes including the out-
come of interest (£). We explored the multiple settings with increasing number of causal par-
ents (|JPag| ={i |2 <i<6}) and used the same procedure with multiple source environments
explained in Section for dividing the data into two source environments. In all settings Causal
GP was able to capture the structural and functional form between effect variable E and its causal
parents Pa. We report the marginal likelihood of the target data in Figure[Ia|for Causal GP well as
for Gaussian process (GP), which does not search over all the possible structures but instead uses all
random variables other than E to capture the functional form. The proposed approach as expected
performs consistently better than a simple Gaussian process (a higher marginal likelihood). As the
number of causal parents increases the performance of Causal GP decreases but still remains higher
than GP up to six causal parents.

5 CONCLUSION

We present an approach for determining causal relations across multiple environments using Gaus-
sian processes. The proposed method captures complex causal relations resulting in 1) lower resid-
uals on target environment data (better than a linear assumption model) and 2) larger marginal like-
lihood of target data by harnessing information from multiple environments in a multivariate setting
up to six causal parents. In developing this work further, higher dimensional settings should be ex-
amined which are common in real-world scenarios and can aid in improved decision-making under
distribution shifts.
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