
Under review as a conference paper at ICLR 2020

CAUSAL MODELING FOR FAIRNESS IN DYNAMICAL
SYSTEMS: A CASE STUDY IN LENDING

Anonymous authors
Paper under double-blind review

ABSTRACT

In many application areas—lending, education, and online recommenders, for
example—fairness and equity concerns emerge when a machine learning system
interacts with a dynamically changing environment to produce both immediate and
long-term effects for individuals and demographic groups. This paper investigates
the benefits of causal reasoning and the role of modeling interventions in these
settings. Through a detailed case study, we illustrate how causal assumptions enable
simulation (when environment dynamics are known) and off-policy estimation
(when dynamics are unknown) of interventions on short- and long-term outcomes,
for both groups and individuals.

1 INTRODUCTION

How do we design fair policies for complex, evolving systems? Recently, the literature on fairness in
dynamical systems (a.k.a. “feedback loops”) has begun exploring the role of algorithmic systems
in shaping their environments over time (Hashimoto et al., 2018; Lum & Isaac, 2016; Ensign et al.,
2018; D’Amour et al., 2020). The key insight from these papers is that the repeated application of
algorithmic tools in a changing environment can cause fairness impacts in the long-term distinct from
those in the short-term.

While the methods in this literature are quite disparate, we note that causal directed acyclic graphs
(DAGs) (Pearl, 2009; Richardson & Robins, 2013) serve as a unifying framework for all of these
papers (assuming loops are rolled out over finite horizons). While causal DAGs have been used
to study one-shot fair decision-making (Kusner et al., 2017; 2019; Kilbertus et al., 2017), they
are uncommon in fairness settings involving sequential decisions. The mechanism of intervention
enables causal reasoning that we argue addresses critical problems in the practical deployment of
“fair” sequential decision makers, such as off-policy evaluation from biased observational data. To
illustrate the benefits of causal modeling, we provide a case study showing how causal reasoning can
be brought to bear in the lending setting proposed by Liu et al. (2018). We show empirically how
causal reasoning improves off-policy evaluation and enables sensitivity analysis.

2 THE LENDING MODEL: A CAUSAL RE-INTERPRETATION

Notation There are several ways to encode causal assumptions in DAG form. In this paper, we focus
on structural causal models (SCMs) (Pearl, 2009)1. Graphically, endogenous and exogenous nodes
depict the structural assumptions of the SCM: each endogenous node is the output of a deterministic
structural equation while the exogenous nodes represent stochasitcity in the generative process. For
example, Z = fZ(Parents(Z), UZ) might represent some (possibly stochastic) treatment policy. We
denote by p the joint distribution specified by the SCM. Under the do-operation (i.e. graph surgery),
various interventional distributions can be derived. Atomic intervention on the treatment value
("What would happen if all treatments were set to 1?") induces the distribution pdo(Z=1), while policy
intervention on the treatment function ("What would happen if a new non-constant treatment function
f̂Z were applied?") induces the distribution pdo(fZ→f̂Z). When computing expected outcomes under
intervention, we specify the interventional distribution in the subscript of the expectation.

1Overviews of SCMs at various levels of detail can be found elsewhere (Pearl, 2009; Madras et al., 2019;
Buesing et al., 2019)
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Figure 1: Our structural causal model (SCM) re-interpretation of the one-step model from Liu et al.
(2018). See Section 2 for discussion and Appendix B.3 for symbol legend.

Lending SCM Liu et al. (2018) studied single-step dynamics of threshold-based classifiers, with a
special focus on lending. Our SCM re-interpretation of this model can be seen in Figure 1. In this
model, a person with group membership (a.k.a. sensitive attribute) A receives a credit score X , and
applies to a bank for a loan. The bank makes a binary decision T about whether to award the loan
using the policy fT . The binary potential outcome Y is realized, which is converted to institutional
profit or loss only if T = 12. Finally, the applicant’s credit score is modified to X̃ (increased on
repayment, decreased on default, static if T = 0)3. The bank’s utility is measured through their profit
U (a sum over the individual profits u) as well as the expected score change ∆j , representing the
average change in credit score after one time-step among members of group A = j. Varying the loan
policy can achieve different values of U ,∆j , resulting in outcomes with different fairness properties.

Liu et al. (2018) consider the effect of various threshold policies for loan assignment under this model,
namely the expected values of U and ∆ for some policies with group-specific thresholds τ , (τ0, τ1)
that offer loans to applicants of group j with score X if and only if their credit score X > τj . They
show that different thresholds satisfy different criteria: maximum profit (MAXPROF), demographic
parity (DEMPAR), and equal opportunity (EQOPP). In the language of our paper, comparing threshold
policies is done through policy evaluation and intervention. Denoting by πτ a policy with per-group
thresholds τ , these results can be phrased with the tool of policy intervention: we evaluate the policy
πτ by estimating the quantities Epdo(fT→πτ ) [U ] and Epdo(fT→πτ ) [∆j ] ∀j, for various τ computed
under different fairness criteria.

3 EXPERIMENTS

We begin by relaxing the assumptions of known dynamics and show that causal inference improves
off-policy estimation. We then extend the original model to a longer time horizon and provide a
sensitivity analysis. In a supplementary experiment (Appendix C), we extend the model to include
the credit scoring bureau as a additional agent in the system.

3.1 OFF-POLICY EVALUATION AND LEARNING

We consider a off-policy evaluation scenario where the bank has historical data from a profit-
maximizing policy (MAXPROF) and wishes to learn and estimate the quality of an equal opportunity
policy (EQOPP) before deploying it. Assume that observational data must be used (i.e. online A/B
testing is unsafe or unethical). In the lending SCM (see Figure 1 for depiction and Appendix B for
full specification), the key (non-trivial) structural functions of the SCM are:

X = fX(A,UX)

T = fT (T,X,A,UT )

Y = fY (X,A,UY )

(1)

2Therefore this model does not capture a notion of opportunity loss for not extending a loan to applicants
who are qualified.

3Likewise, the applicant’s score does not change in the absence of a loan; this assumption may be inaccurate,
since not receiving a loan could create additional financial issues for the applicant.
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Figure 2: Errors of EReg and EDR (regression and doubly robust) for off-policy estimation of Eπ[u]
of single threshold policies from observational data. Estimation for ∆ (also linear in Y ) is similar.

which are the feature distribution, the historical treatment policy, and the outcome distribution,
respectively. The change in score ∆, the bank’s utility u, and the next-step score X̃ , are simple
functions of the other variables: (∆, u) = (c+, u+) if Y = 1 or (c−, u−) if Y = 0, and X̃ = X + ∆
(for constants c+, u+ > 0; c−, u− < 0). As in Liu et al. (2018), we focus on threshold policies,
which are defined by group-specific thresholds τ , (τ0, τ1) that offer loans to applicants of group j
with score X if and only if their credit score X > τj .

Liu et al. (2018) make a very strong assumption in their method — that these underlying dynamics
parameters (fX , fT , fY , c+, c−, u+, u−) of the system are known (this is stronger than just assuming
the causal structure, as we do in Fig. 1). While some of these unknown parameters (e.g. u+, u−, fT )
are easy to estimate from data. One in particular is difficult: the outcome function Y = fY (X,A,UY ).
Note that Y is a causal quantity representing a potential outcome (Rubin, 2005): it is the probability
of a person repaying a loan were they to receive one4. In observational data, Y is missing-not-at-
random: we only observe Y when a loan was given. Therefore, straightforward estimates may be
biased or high variance. This difficulty of estimating Y propagates into the rest of the problem, i.e. u
and ∆ also represent potential outcomes that are missing if T = 0. Therefore, choosing the policy
thresholds—which involves estimating (u,∆)—is inherently a causal problem.

Given a policy π, we focus on computing an off-policy estimator E(π) ≈ Epdo(fT→π) [u]. We
consider two estimators. The naive baseline is derived from logistic regression on the obser-
vational data: first learn a function to approximate fReg(X,A) ≈ Epobs [u|X,A] in the observa-
tional data; then apply this regression for every individual where π suggests giving the treatment:
EReg(π) = Epobs(X,A)[fReg(X,A)|π(X,A) = 1]. The causally-inspired estimator treats estimating u
as a missing data problem. Noting that (X,A) satisfy the backdoor criterion w.r.t. u justifies the use
of a Doubly Robust estimator (Zhang et al., 2012), a variant of inverse probability weighting that
exhibits low variance (Bang & Robins, 2005). With Ci = 1[π(Xi, Ai) = T ], we have

EDR =
1

n

n∑
i=1

[ Ci(π)ui
P (Ci(π) = 1|Xi, Ai)

− Ci(π)− P (Ci(π) = 1|Xi, Ai)

P (Ci(π) = 1|Xi, Ai)
fReg(Xi, Ai)

]
.

We can use an analogous estimator for ∆, where the same backdoor criterion holds.

We generate observational data from the SCM in Figure 1, under a MAXPROF threshold policy.
We then consider a new policy πτ with per-group thresholds {τj}. We compute the estimators
EReg(πτ ) and EDR(πτ ) for varying values of these thresholds. Figure 2 shows that the causally
motivated estimator EDR achieves lower off-policy estimation error on both sensitive groups, across
the threshold range. Note the high estimation error of the baseline EReg for low values of τ . This is
because the historical policy typically does not award loans to applicants with low scores, meaning
there are fewer data available for the regression.

Ultimately, the goal of estimating these quantities is to improve policy learning. We can formulate an
objective that trades off between utility and an equal opportunity objective δEqOpp = |P (T = 1|Y =

4Using the notation of Rubin (2005), we could denote it as Y1.
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Figure 4: Evaluating multi-step policy robustness to distribution shift for various choice of intervention
distribution q. Sensitivity of institutional utility—formally |Eq[U ]− E[U ]|—and sensitivity of group
avg. score change—formally |Eq[∆j ]− E[∆j ]|—are shown as a function of steps. Expected profit is
relatively robust to both interventions, whereas the expected per-group score changes are relatively
more sensitive to these interventions.

1, A = 0) − P (T = 1|Y = 1, A = 1)|. The objective is Vπ = U − λδEqOpp. We hope to maximize
this, with some hyperparameter λ ∈ R governing the tradeoff. Estimating δEqOpp itself presents a
challenging causal problem, since Y is frequently unobserved (see Appendix A for details).
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Figure 3: Test set value of a fairness-
utility objective using the two off-policy
estimators. Hyperparameter λ governs
the tradeoff. Higher Vπ is better.

Using the estimators presented above, we can construct
an off-policy estimate of Vπ We search over the space of
two-threshold policies (one threshold per group) to find
the policy with the highest off-policy estimate of the objec-
tive on a validation set. We then calculate the true value of
Vπ on a held-out test set, using our simulator to generate
the true potential outcomes. The estimator EDR that more
fully incorporates causal reasoning in the parameter esti-
mation finds a better objective value, ultimately yielding
an improved policy (see Fig. 3). We emphasize that this
improvement requires assumptions about causal structures,
but not precise knowledge of the system dynamics.

3.2 SENSITIVITY
ANALYSIS OF LONG-TERM OUTCOMES

Sensitivity analysis (Rosenbaum, 2014; Saltelli et al.,
2008) measures how a model responds to changes in its
underlying assumptions. It is especially relevant to long-term fairness, where errors compound over
time. Causal DAGs are a natural match for sensitivity analysis since they make structural assumptions
explicit. We show how to conduct a long-term sensitivity analysis in the lending SCM by casting
sensitivity analysis as on-policy evaluation under an intervention that accounts for model mismatch5.

To handle multiple steps we alter the structural equation on scores to the recursive update Xt+1 =
fXt>0(Xt, Y t, T t) (See Figure 5 in Appendix B.2 for depiction). A affects treatments and outcomes
at every step. We analyze the sensitivity of the EQOPP policy to two forms of model mismatch. In
the first, do(fT → f̂EOT ) recomputes the per-group thresholds under the EQOPP constraint, but using
incorrect statistics from the credit bureau. In particular, the marginal p(Y |X) was is for both group’s
repayment probabilities rather than the correct p(Y |X,A). The second intervention do(fY → f̂Y ) is
more severe, as p(Y |X) is used to sample potential outcomes Y rather than just set the thresholds
within fT . We measure error under each intervention relative to the “ground truth” baseline where the
correct potential outcome distributions are used to set thresholds and sample data. We measure how
these errors compound over time (Figure 4). We observe the institutional profits are surprisingly robust
to both forms of intervention, while the per-group outcomes are more sensitive to these interventions,
especially to do(fY → f̂Y ). This suggests a policy fairness sensitivity to assumptions around the
distribution over potential outcomes across sensitive groups, which underscores the importance of
accurately estimating this distribution from observational data as in Section 3.1.

5“Mismatch” refers here to structural equations with misspecified functional forms, not incorrect assumptions
of causal structure.
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A EXPERIMENTAL DETAILS FOR OFF-POLICY EVALUATION AND LEARNING

Here, we discuss details on the setup for the off-policy evaluation experiment in Sec. 3.1.

A.1 DATA GENERATION

We generate data from the Liu et al. (2018) model, described in full in Appendix B. We use
(c+, c−) = (75,−150) and (u+, u−) = (1,−4). We use a single threshold policy of τj = 620∀ j.
We generate 13 data sets of 10000 examples each, using 11 for training (to get confidence intervals),
1 for validation, and 1 for test.

In order to use re-weighting estimators, we must have overlap i.e. each point (X,A) must have a
non-zero probability of receiving each treatment in the observational data. Since a threshold policy
does not satisfy this, we flipped the treatment chosen by the threshold policy with a probability of 0.1.

A.2 TREATMENT AND OUTCOME MODELS

We use L2-regularized logistic regression for both the treatment and the outcome model using the
“liblinear” default solver in sklearn. We train a treatment and outcome model on each of the 11
training sets, and use these to construct our confidence intervals.

A.3 ESTIMATION OF EQUAL OPPORTUNITY DISTANCE

We define the equal opportunity metric δEqOpp as

δEqOpp = |P (T = 1|Y = 1, A = 0)− P (T = 1|Y = 1, A = 1)|. (2)

The key unit in this expression is P (T = 1|Y = 1) (removing A = a from the right side for clarity).
This is non-trivial to estimate, since Y is unobserved for many cases.

We take the following approach. First, using Bayes rule, we have

P (T = 1|Y = 1) =
P (Y = 1|T = 1)P (T = 1)

P (Y = 1)
. (3)

P (T = 1) is easy to estimate from observational data. P (Y = 1|T = 1) is the off-policy estimation
question — we use either EReg or EDR to estimate this. We estimate P (Y = 1) using off-policy
estimation as well, noting that P (Y = 1) = P (Y = 1|T̃ = 1), if T̃ ⊥ Y . Therefore, we can obtain
an estimate for the marginal distribution of Y by doing off-policy estimation for random policies T̃
(again, using either EReg or EDR). We choose 10 random Bernoulli policies to obtain 10 estimates of
P (Y = 1) and average them.

A.4 THRESHOLD SEARCH

In both the estimation (Fig. 2) and selection (Fig. 3) experiments, we consider all thresholds
τ ∈ [300, 850) such that τmod5 = 0 (where 300 and 850 are the minimum and maximum credit
scores in the dataset). To choose our best thresholds in the selection experiment, we consider all pairs
of group-specific thresholds (τ0, τ1), and estimate the value of Vπ for the policy associated with those
thresholds. We find the optimal value on the validation set, and test them to obtain a final value on
the test set Since we do not require overlap to hold in the target policy, we consider hard threshold
policies (we do not flip any predictions post-hoc, as we do in the observational data). In the selection
experiment, we test λ in increments of 0.1 from 0 to 0.9.
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B SCM DETAILS

B.1 PARAMETERIZATION FOR SINGLE-STEP MODEL

As briefly discussed above, Liu et al. (2018) propose a one-step feedback model for a decision-
making setting then analyze several candidate policies—denoted by the structural equation fT in our
analysis—by simulating one step of dynamics to compute the institution’s profit and group outcomes
for each policy. Figure 1 shows our SCM formulation of this dynamics model. Here we provide
expressions for the specific structural equations used.

To sample over p(X,A) we start with Bernoulli sampling of A, parameterized SCM-style like

UAi ∼ Bernoulli(UAi |θ); Ai = fA(UAi) , UAi (4)

where θ ∈ [0, 1] is the proportion of the A = 1 group.

We then sample scores by the inverse CDF trick6. Given an inverse cumulative distribution function
CDF−1

j for each group j ∈ {0, 1}, we can write

UXi ∼ Uniform(UXi |[0, 1]) (5)

Xi = fX(UXi , Ai) , CDF−1
Aj

(UXi) (6)

Liu et al. (2018) discuss implementing threshold policies for each group j ∈ {0, 1}, which are
parameterized by thresholds cj and tie-breaking Bernoulli probabilities γ (for simplicity of exposition
we assume the tie-breaking probability is shared across groups). The original expression was

P(T = 1|X,A = j) =


1 X > cj
γ X = cj
0 X < cj .

(7)

Then, after denoting by 1(·) the indicator function, we can rephrase this distribution in terms of a
structural equation governing treatment:

UTi ∼ Bernoulli(UTi |γ) (8)
Ti = fT (UTi , Xi, Ai)

, 11(Xi>cAi ) · U1(Xi=cAi )

Ti
· 01(Xi<cAi ). (9)

A policy fT (which itself may or may not satisfy some fairness criteria) is evaluated in terms of
whether loans were given to creditworthy individuals, and in terms of whether each demographic
group successfully repaid any allocated loans on average. To capture the notion of creditworthiness,
we introduce a potential outcome Y (repayment if the loan were given) for each individual, which
is drawn7 from p(Y |X,A)8. By convention T = 1 as the “positive” treatment (e.g., got loan) and
Y = 1 as the “positive” outcome (e.g., would have repaid loan if given) Note that Y is independent
of T given X , meaning Y is really an indicator of potential success. Formally, the potential outcome
Y is distributed as Yi ∼ Bernoulli(Yi|ρ(Xi, Ai)) for some function ρ : X × A → [0, 1]. We
reparameterize this as a structural equation using the Gumbel-max trick9 (Gumbel & Lieblein, 1954;

6This standard trick is used for sampling from distributions with know densities. Recalling that
CDFp : X → [0, 1] is a monotonic (invertible) function representing CDFp(X

′) =
∫X′

−∞ dXp(X < X ′). Then
to sample X ′ ∼ p we first sample U ∼ Uniform(U |[0, 1]) then compute X ′ = CDF−1

p (U).
7The authors denoted by ρ(x) the probability of potential success at score X . Various quantities were then

computed, e.g., u(x) = u+ρ(x) + u−(1 − ρ(x)). We observe that this is equivalent to marginalizing over
potential outcomes u(x) = Ep(Y |X) [u+Y + u−(1− Y )]; in our simulations we compute such expectations
via Monte Carlo sampling with values of Y explicitly sampled.

8The authors use ρ(X) = p(Y |X) in their analysis (suggesting that potential outcome is independent of
group membership conditioned on score) but ρ(X,A) = p(Y |X,A) in the code, i.e. the potential outcome
depends differently on score for each group. The SCM as expressed in Figure 1 represents the codebase version.

9This trick reparameterizes a Categorical or Bernoulli sample as a deterministic transformation of a Uniform
sample. See Oberst & Sontag (2019) for discussion of how to perform counterfactual inference for SCMs with
Categorical random variables.
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Figure 5: Phrasing the model from Liu et al. (2018) as an SCM enables a multi-step extension for
measuring long-term impacts, e.g., in the two-step version shown here.

Maddison et al., 2014):

UYi ∼ Uniform(UYi |[0, 1]) (10)
Yi = fY (UY , Xi, Ai)

, 1

(
log

ρ(Xi, Ai)

1− ρ(Xi, Ai)
+ log

UY
1− UY

> 0

)
. (11)

The institutional utility ui and the updated individual score X̃i are deterministic functions of the
outcome Yi and the treatment Ti, and the original score Xi:

ui = fu(Yi, Ti) ,

{
u

1(Yi)=1
+ · u1(Yi)=0

− if Ti = 1

0 else
, (12)

X̃i = fX̃(Xi, Yi, Ti) ,

{
Xi + c

1(Yi)=1
+ · c1(Yi)=0

− if Ti = 1

Xi else
. (13)

As mentioned in Section 2, {u+, u−, c+, c−} are fixed parameters that encode expected gain/loss in
utility/score based on payment/default of loan.

There are two global quantities of interest. Firstly, the institution cares about its overall utility at the
current step (ignoring all aspects of the future), expressed as

U = fU (u1...N ) ,
1

N

N∑
i=1

ui. (14)

Secondly, society (and possibly the institution) might care the average per-group score change induced
by the policy, expressed for group A = j as

∆j = f∆j (X1...N , X̃1...N , A1...N ) ,
1

NAj

N∑
i=1

(X̃i −Xi)
1(Ai=j), (15)

with NAj ,
∑
i′ 1(Ai′ = j) is the size of the Aj = 1 group.

B.2 MULTI-STEP EXTENSION

Figure 5 depects the SCM for the multi-step extension to the one-step lending model proposed by
Liu et al. (2018).

B.3 SYMBOL LEGENDS

Table 1 decodes the symbols used in the various SCMs (e.g., Figure 1).

8



Under review as a conference paper at ICLR 2020

Symbol Meaning
N Number of individuals
|A| Number of demographic groups
Ai Sensitive attribute for individual i
UAi Exogenous noise on sensitive attribute for individual i
Xi Score for individual i
UXi Exogenous noise on score for individual i
Yi Potential outcome (loan repayment/default) for individual i
UYi Exogenous noise on potential outcome for individual i
Ti Treatment (institution gives/withholds loan) for individual i
UTi Exogenous noise on treatment for individual i
ui Utility of individual i (from the institution’s perspective)
∆i Expected improvement of score for individual i
X̃i Score for individual i after one time step
U Global utility (from institution’s perspective)

∆j Expected change in score for group j

Table 1: Symbol legend for Figure 1

C MULTI-ACTOR EXPERIMENT

In this section we discuss an additional experiment that demonstrates how causal DAGs can be used
as expressive simulators when environment dynamics are known.

A

UA
X

UX

X̂

T
UT

Y

UY

Uu

X̃

∆

N

|A|

Figure 6: An extension of the lending (SCM) that emphasizes the role of the credit scoring bureau.

Intervention by credit bureau Liu et al. (2018) conduct experiments based on statistics of FICO
credit scores assigned by the credit bureau TransUnion (Reserve, 2007). We note that these credit score
decisions themselves constitute a policy; and moreover, the language of interventions in the SCM
framework allows us to characterize decisions made by the credit bureau (rather than the bank) using
the same fairness and profit metrics as before.10 The credit bureau enters the SCM by reinterpreting
Xi as features related to creditworthiness of an individual, then introducing X̂i = fX̂(Xi) as a
score that is deterministically computed by the agency from the features (See Fig. 6). When fX̂ is
the identity function, we recover the original model. Policy evaluation under double intervention
Mdo(fT→f̂T ,fX̂→f̂X̂) captures the sensitivity of the bank’s decisions to the decisions of the credit
bureau (and vice versa).

Figure 7 shows the effect on the average utility E[U ] and average per-group score change E[∆j ] of
a simple policy intervention by the credit bureau. The intervention involves the bureau setting the
minimum score to 600 for all applicants via the structural equation f̂X̂(X) = min(X, 600). This
intervention is unlikely in the real world because it contradicts the profit incentives of the bureau,
which encourage well-calibrated scores. Nevertheless, it coarsely captures a potential scenario where

10Note that recent changes by the credit scoring bureau Fair Isaac Corp. (https://www.wsj.com/
articles/fico-changes-could-lower-your-credit-score-11579780800) can be charac-
terized as such an intervention.
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Figure 7: Policy evaluation under credit bureau intervention f̂X̂(X) = min(X, τCB) with
τCB = 600. Group score change—formally E

p
do(f

X̂
→f̂

X̂
,fT→f̂T ) [∆j ]—and institutional profits—

E
p
do(f

X̂
→f̂

X̂
,fT→f̂T ) [U ]—are shown as functions of the two group thresholds {τj} under several

fairness constraints.

an actor besides the bank seeks to encourage fair outcomes in a group-blind way, since under the new
scoring policy minority applicants are more likely to receive loans. However, we see in Figure 7a
that the average group outcome for Black applicants is negative when the bank’s group threshold
τBlack is below 600, since in this case its policy offers loans to individuals who have good scores
on paper but are unlikely to repay the loans. Interestingly, the expected profit (Figure 7b) under
credit bureau intervention differs depending on the fairness criteria of the bank. This is because each
fairness criteria differently constrains the relationship between the two thresholds {τBlack, τWhite},
so the choice of fairness criteria implicitly sets how many applicants with boosted scores (X < 600,
thus X̂ = 600) are selected for loans. DEMPAR is more sensitive to the credit bureau intervention
than EQOPP; it obeys a stricter fairness constraint and offers more loans to applicants with boosted
scores (who are are unlikely to repay, and disproportionately belong to the minority group).

Causal model as computation graph A causal DAG can be thought of an expressive simulator,
whose capabilities extend the classical graphical model via the mechanism of intervention. Accord-
ingly, the standard tools for optimization/learning in computation graphs (Schulman et al., 2015)
can be brought to bear in order to learn policies that capture optimal rewards across many interven-
tional settings. While there are several obstacles in applying standard gradient based learning to the
lending setting, we found in unreported experiments that biased gradient estimators are capable of
learning bureau policy that improves expected score change outcomes for the disadvantaged group by
marginalizing out uncertainty about the bank’s choice of fairness criterion. Such an approach holds
promise in scaling to high dimensional datasets, which we leave for future work.

When both causal structure (which edges are present in graph) and dynamics (functional form of
structural equations) are known, then can be jointly leveraged to produce expressive simulators capable
of generating trajectories under many interventional distributions. This implies that a parameterized
machine learning system interacting with a dynamic environment can adjust its parameters to optimize
for short- or long-term fairness outcomes, even when there is uncertainty about which interventions
will occur (for example those induced by other actors) at test time.
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