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ABSTRACT

Generalization across environments is critical to the successful application of re-
inforcement learning algorithms to real-world challenges. In this paper, we con-
sider the problem of learning abstractions that generalize in block MDPs, fami-
lies of environments with a shared latent state space and dynamics structure over
that latent space, but varying observations. We leverage tools from causal infer-
ence to propose a method of invariant prediction to learn state abstractions that
generalize to novel observations in the multi-environment setting. We prove that
for certain classes of environments, this approach outputs with high probability a
state abstraction corresponding to the causal feature set with respect to the return.
We further provide more general bounds on model error and generalization error
in the multi-environment setting, in the process showing a connection between
causal variable selection and the state abstraction framework for MDPs. We give
empirical evidence that our methods work in both linear and nonlinear settings,
attaining improved generalization over single- and multi-task baselines.

1 INTRODUCTION

The canonical reinforcement learning (RL) problem assumes an agent interacting with a single MDP
with a fixed observation space and dynamics structure. This assumption is difficult to ensure in prac-
tice, where state spaces are often large and infeasible to explore entirely during training. However,
there is often a latent structure to be leveraged to allow for good generalization. As an example, a
robot’s sensors may be moved, or the lighting conditions in a room may change, but the physical
dynamics of the environment are still the same. These are examples of environment-specific char-
acteristics that current RL algorithms often overfit to. In the worst case, some training environments
may contain spurious correlations that will not be present at test time, causing catastrophic failures
in generalization (Zhang et al., 2018a; Song et al., 2020). To develop algorithms that will be robust
to these sorts of changes, we must consider problem settings that allow for multiple environments
with a shared dynamics structure.

Recent prior works (Amit & Meir, 2018; Yin et al., 2019) have developed generalization bounds
for the multi-task problem, but they depend on the number of tasks seen at training time, which
can be prohibitively expensive given how sample inefficient RL is even in the single task regime. To
obtain stronger generalization results, we propose to consider a problem which we refer to as ‘multi-
environment’ RL: like multi-task RL, the agent seeks to maximize return on a set of environments,
but only some of which can be trained on. We make the assumption that there exists some latent
causal structure that is shared among all of the environments, and that the sources of variability
between environments do not affect reward. This family of environments is called a Block MDP (Du
et al., 2019), in which the observations may change, but the latent states, dynamics, and reward
function are the same. A formal definition of this type of MDP will be presented in Section 3.

Though the setting we consider is a subset of the multi-task RL problem, we show in this work
that the added assumption of shared structure allows for much stronger generalization results than
have been obtained by multi-task approaches. Naive application of generalization bounds to the
multi-task reinforcement learning setting is very loose because the learner is typically given access
to only a few tasks relative to the number of samples from each task. Indeed, Cobbe et al. (2018);
Zhang et al. (2018b) find that agents trained using standard methods require many thousands of
environments before succeeding at ‘generalizing’ to new environments.
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The main contribution of this paper is to use tools from causal inference to address generalization in
the Block MDP setting, proposing a new method based on the invariant causal prediction literature.
In certain linear function approximation settings, we demonstrate that this method will, with high
probability, learn an optimal state abstraction that generalizes across all environments using many
fewer training environments than would be necessary for standard PAC bounds. We replace this PAC
requirement with requirements from causal inference on the types of environments seen at training
time. We then draw a connection between bisimulation and the minimal causal set of variables
found by our algorithm, providing bounds on the model error and sample complexity of the method.
We further show that using analogous invariant prediction methods for the nonlinear function ap-
proximation setting can yield improved generalization performance over multi-task and single-task
baselines. We relate this method to previous work on learning representations of MDPs (Gelada
et al., 2019; Luo et al., 2019) and develop multi-task generalization bounds for such representations.

2 BACKGROUND

State Abstractions and Bisimulation. State abstractions have been studied as a way to distinguish
relevant from irrelevant information (Li et al., 2006) in order to create a more compact representation
for easier decision making and planning. Bertsekas & Castanon (1989); Roy (2006) provide bounds
for approximation errors for various aggregation methods, and Li et al. (2006) discuss the merits of
abstraction discovery as a way to solve related MDPs.

Bisimulation relations are a type of state abstraction that offers a mathematically precise definition of
what it means for two environments to ‘share the same structure’ (Larsen & Skou, 1989; Givan et al.,
2003). We say that two states are bisimilar if they share the same expected reward and equivalent
distributions over the next bisimilar states. For example, if a robot is given the task of washing the
dishes in a kitchen, changing the wallpaper in the kitchen doesn’t change anything relevant to the
task. One then could define a bisimulation relation that equates observations based on the locations
and soil levels of dishes in the room and ignores the wallpaper. These relations can be used to
simplify the state space for tasks like policy transfer (Castro & Precup, 2010), and are intimately
tied to state abstraction. For example, the model-irrelevance abstraction described by Li et al. (2006)
is precisely characterized as a bisimulation relation.
Definition 1 (Bisimulation Relations (Givan et al., 2003)). Given an MDP M, an equivalence
relation B between states is a bisimulation relation if for all states s1, s2 ∈ S that are equivalent
under B (i.e. s1Bs2), the following conditions hold for all actions a ∈ A:

R(s1, a) = R(s2, a)

P(G|s1, a) = P(G|s2, a),∀G ∈ S/B

Where S/B denotes the partition of S under the relationB, the set of all groups of equivalent states,
and where P(G|s, a) =

∑
s′∈G P(s′|s, a).

Whereas this definition was originally designed for the single MDP setting to find bisimilar states
within an MDP, we are now trying to find bisimilar states across different MDPs, or different ex-
perimental conditions. One can intuitively think of this carrying over by imagining all experimental
conditions i mapped to a single super-MDP with state space S = ∪iSi where we give up the irre-
ducibility assumption, i.e. we can no longer reach every state si from any other state sj . Specifically,
we say that two MDPsM1 andM2 are bisimilar if there exist bisimulation relationsB1 andB2 such
thatM1/B1 is isomorphic toM2/B2. Bisimilar MDPs are therefore MDPs which are behaviourally
the same.

Causal Inference Using Invariant Prediction. Peters et al. (2016) first introduced an algorithm,
Invariant Causal Prediction (ICP), to find the causal feature set, the minimal set of features which
are causal predictors of a target variable, by exploiting the fact that causal models have an invariance
property (Pearl, 2009; Schölkopf et al., 2012). Arjovsky et al. (2019) extend this work by proposing
invariant risk minimization (IRM), augmenting empirical risk minimization to learn a data represen-
tation free of spurious correlations. They assume there exists some partition of the training data X
into experiments e ∈ E , and that the model’s predictions take the form Y e = w>φ(Xe). IRM aims
to learn a representation φ for which the optimal linear classifier, w, is invariant across e, where
optimality is defined as minimizing the empirical risk Re. We can then expect this representation
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and classifier to have low risk in new experiments e, which have the same causal structure as the
training set.

3 PROBLEM SETUP

We consider a family of environments ME = {(Xe,A,Re, Te, γ)| e ∈ E}, where E is some
index set. For simplicity of notation, we drop the subscript e when referring to the union over all
environments E . Our goal is to use a subset Etrain ⊂ E of these environments to learn a representation
φ : X → Rd which enables generalization of a learned policy to every environment. We denote the
number of training environments as N := |Etrain|. We assume that the environments share some
structure, and consider different degrees to which this structure may be shared.

3.1 THE BLOCK MDP AND RELAXATIONS

Block MDPs (Du et al., 2019) are described by a tuple 〈S,A,X , p, q, R〉 with a finite, unobservable
state space S, finite action space A, and possibly infinite, but observable space X . p denotes the
latent transition distribution p(s′|s, a) for s, s′ ∈ S, a ∈ A, q is the (possibly stochastic) emission
function that gives the observations from the latent state q(x|s) for x ∈ X , s ∈ S , and R the
reward function. A graphical model of the interactions between the various variables can be found
in Figure 1.
Assumption 1 (Block structure (Du et al., 2019)). Each observation x uniquely determines its
generating state s. That is, the observation space X can be partitioned into disjoint blocks Xs, each
containing the support of the conditional distribution q(·|s).

This assumption gives us the Markov property in X . We translate the block MDP to our multi-
environment setting as follows. If a family of environments ME satisfies the block MDP as-
sumption, then each e ∈ E corresponds to an emission function qe, with S,A,X and p shared
for all M ∈ ME . We will move the potential randomness from qe into an auxiliary vari-
able η ∈ Ω, with Ω some probability space, and write qe(η, s). Further, we require that if
range(qe(·, s)) ∩ range(qe′(·, s′)) 6= ∅, then s = s′. The objective is to learn a useful state ab-
straction to promote generalization across the different emission functions qe, given that only a
subset is provided for training. We now address relaxations of this definition for our setting.

Spurious correlations. Our initial presentation of the block MDP assumes that the noise variable
η is sampled randomly at every time step, which prevents multi-timestep correlations (Figure 1 in
black, solid lines). We therefore also consider a more realistic relaxed block MDP, where spurious
variables may have different transition dynamics across the different environments so long as these
correlations do not affect the expected reward (Figure 1, now including black dashed lines). This
is equivalent to augmenting each Block MDP in our family with a noise variable ηe, such that the
observation x = (qe(ηe, s)), and p(x′|x, a) = p(q−1(x′)|s, a)pe(η

′
e|s, ηe). We note that this section

still satisfies Assumption 1.

Figure 1: Graphical model of a block
MDP with stochastic, correlated observa-
tions, with an IRM goal to extract s from
the sequence of observations, and discard
the spurious noise η. Red dashed ovals in-
dicate the entire tangled latent state at each
timestep. Black dashed lines and grey lines
indicate two additional tiers of difficulty to
consider.

Realizability. Though our analysis will require Assump-
tion 1, we claim that this is a reasonable requirement as
it makes the learning problem realizable. Relaxing As-
sumption 1 means that the value function learning prob-
lem may become ill-posed, as the same observation can
map to entirely different states in the latent MDP with dif-
ferent values, making our environment partially observ-
able (a POMDP, Figure 1 with grey lines). We provide a
lower bound on the value approximation error attainable
in this setting in the appendix (Proposition 2).

3.2 ASSUMPTIONS ON CAUSAL STRUCTURE

State abstraction and causal inference both aim to elim-
inate spurious features in a learning algorithm’s input.
However, these two approaches are applied to drastically
different types of problems. Though we demonstrate that
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causal inference methods can be applied to reinforcement learning, this will require some assump-
tion on how causal mechanisms are observed. Definitions of the notation used in this section are
deferred to the appendix, though they are standard in the causal inference literature.

The key assumption we make is that the variables in the environment state at time t can only affect
the values of the state at time t+ 1, and can only affect the reward at time t. This assumption allows
us to consider the state and action at time t as the only candidate for causal parents of the state
at time t + 1 and of the reward at time t. This assumption is crucial to the Markov behaviour of
the Markov decision process. We refer the reader to Figure 6 to demonstrate how causal graphical
models can be translated to this setting.

Assumption 2 (Temporal Causal Mechanisms). Let x1 and x2 be components of the observation x.
Then when no intervention is performed on the environment, we have the following independence.

X1
t+1 ⊥ X2

t+1|xt (1)

Assumption 3 (Environment Interventions). Let X = X1 × · · · × Xn, and S = Xi1 × . . . Xik .
Each environment e ∈ E corresponds to a do- (Pearl, 2009) or soft (Eberhardt & Scheines, 2007)
intervention on a single variable xi in the observation space.

This assumption allows us to use tools from causal inference to identify candidate model-irrelevance
state abstractions that may hold across an entire family of MDPs, rather than only the ones observed,
based on using the state at one timestep to predict values at the next timestep. In the setting of
Assumption 3, we can reconstruct the block MDP emission function q by concatenating the spurious
variables from X \ S to S. We discuss some constraints on interventions necessary to satisfy the
block MDP assumption in the appendix.

4 CONNECTING STATE ABSTRACTIONS TO CAUSAL FEATURE SETS

Invariant causal prediction aims to identify a set S of causal variables such that a linear predictor
with support on S will attain consistent performance over all environments. In other words, ICP
removes irrelevant variables from the input, just as state abstractions remove irrelevant information
from the environment’s observations. An attractive property of the block MDP setting is that it is
easy to show that there does exist a model-irrelevance state abstraction φ for all MDPs in ME –
namely, the function mapping each observation x to its generating latent state φ(x) = q−1(x). The
formalization and proof of this statement are deferred to the appendix (see Theorem 4).

We consider whether, under Assumptions 1-3, such a state abstraction can be obtained by ICP.
Intuitively, one would then expect that the causal variables should have nice properties as a state
abstraction. The following result confirms this to be the case; a state abstraction that selects the set of
causal variables from the observation space of a block MDP will be a model-irrelevance abstraction
for every environment e ∈ E .

Theorem 1. Consider a family of MDPs ME = {(X , A,R, Pe, γ)|e ∈ E}, with X = Rk. Let ME
satisfy Assumptions 1-3. Let SR ⊆ {1, . . . , k} be the set of variables such that the reward R(x, a)
is a function only of [x]SR (x restricted to the indices in SR). Then let S = AN(R) denote the
ancestors of SR in the (fully observable) causal graph corresponding to the transition dynamics of
ME . Then the state abstraction φS(x) = [x]S is a model-irrelevance abstraction for every e ∈ E .

An important detail in the previous result is the model irrelevance state abstraction incorporates
not just the parents of the reward, but also its ancestors. This is because in RL, we seek to model
return rather than solely rewards, which requires a state abstraction that can capture multi-timestep
interactions. We provide an illustration of this in Figure 6. As a concrete example, note that in
the popular benchmark CartPole, only position x and angle θ are necessary to predict the reward.
However, predicting the return requires θ̇ and ẋ, their respective velocities.

Learning a minimal φ in the setting of Theorem 1 using a single training environment may not
always be possible. However, applying invariant causal prediction methods in the multi-environment
setting will yield the minimal causal set of variables when the training environment interventions
satisfy certain conditions necessary for the identifiability of the causal variables (Peters et al., 2016).
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5 BLOCK MDP GENERALIZATION BOUNDS

We continue to relax the assumptions needed to learn a causal representation and look to the non-
linear setting. As a reminder, the goal of this work is to produce representations that will generalize
from the training environments to a novel test environment. However, normal PAC generalization
bounds require a much larger number of environments than one could expect to obtain in the re-
inforcement learning setting. The appeal of an invariant representation is that it may allow for
theoretical guarantees on learning the right state abstraction with many fewer training environments,
as discussed by Peters et al. (2016). If the learned state abstraction is close to capturing the true base
MDP, then the model error in the test environment can be bounded by a function of the distance of
the test environment’s abstract state distribution to the training environments’. Though the require-
ments given in the following Theorem 2 are difficult to guarantee in practice, the result will hold for
any arbitrary learned state abstraction.

Theorem 2 (Model error bound). LetM1 andM2 be two environments satisfying Assumption 1, and
let φ : X → Z be a model-irrelevance abstraction forM1 andM2. Let the uion of the environments’
state transition functions T1 and T2 be L-lipschitz with respect to the state embedding φ(X), and T
be an arbitrary learned transition function defined on Z . Setting the expected error of T on M1 as
Ex∼π(M1)[‖T (φ(x))− φ(T1(x))‖ = δ, we have the following bound on the error of T in M2

Ex∼M ′ [‖T (φ(x))− φ(T2(x))‖] ≤ δ + 2LW1(πφ(M1), πφ(M2)). (2)

Proof found in Appendix B. W can further provide discrepancy bounds for an MDP M̄ produced by
a learned state representation φ(x), dynamics function fs, and reward function R using the distance
in dynamics J∞D and reward J∞R of M̄ to the underlying MDP M . We first define these distances,

J∞R := sup
x∈X ,a∈A

|R(φ(x), a, φ(x′))− r(x, a)|

J∞D := sup
x∈X ,a∈A

W1(fs(φ(x), a), φP (x, a)).
(3)

Theorem 3. LetM be a block MDP and M̄ the learned invariant MDP with a mapping φ : X 7→ Z .
For any L-Lipschitz valued policy π the value difference of that policy is bounded by

|Qπ(x, a)− Q̄π(φ(x), a)| ≤ J∞R + γLJ∞D
1− γ

, (4)

where Qπ is the value function for π in M and Q̄π is the value function for π in M̄ .

Proof found in Appendix B. This gives us a bound on generalization performance that depends on the
supremum of the dynamics and reward errors, which correspondingly is a regression problem that
will depend on

∑
e∈E ne, the number of samples we have in aggregate over all training environments

rather than the number of training environments, |E|. Recent generalization bounds for deep neural
networks using Rademacher complexity (Bartlett et al., 2017a; Arora et al., 2018) scale with a factor
of 1√

n
where n is the number of samples. We can use n :=

∑
e∈E ne for our setting, getting

generalization bounds for the block MDP setting that scale with the number of samples in aggregate
over all environments, an improvement over previous multi-task bounds that depend on |E|.

6 METHODS

Given these theoretical results, we propose two methods to learn invariant representations in the
block MDP setting. Both methods take inspiration from invariant causal prediction, with the first
being the direct application of linear ICP to select the causal variables in the state in the setting
where variables are given. This corresponds to direct feature selection, which with high probability
returns the minimal causal feature set. The second method is a gradient-based approach akin to
the IRM objective, with no assumption of a linear causal relationship and a learned causal invariant
representation. Like the IRM goal, we aim to learn an invariant state abstraction from stochastic
observations across different interventions i, and impose an additional invariance constraint.
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Variable Selection for Linear Predictors. The following algorithm (Appendix C) returns a
model-irrelevance state abstraction. We require the presence of a replay buffer D, in which tran-
sitions are stored and tagged with the environment from which they came. The algorithm then
applies ICP to find all causal ancestors of the reward iteratively. This approach has the benefit of
inheriting many nice properties from ICP – under suitable identifiability conditions, it will return the
exact causal variable set to a specified degree of confidence.

It also inherits inconvenient properties: the ICP algorithm is exponential in the number of variables,
and so this method is not efficient for high-dimensional observation spaces. We are also restricted to
considering linear relationships of the observation to the reward and next state. Further, because we
take the union over iterative applications of ICP, the confidence parameter α used in each call must
be adjusted accordingly. Given n observation variables, we give a conservative bound of αn .

Learning a Model-irrelevance State Abstraction. We design an objective to learn a dynamics
preserving state abstractionZ , or model-irrelevance abstraction (Li et al., 2006), where the similarity
of the model is bounded by the model error in the environment setting shown in Figure 1. This
requires disentangling the state space into a minimal representation that causes reward st := φ(xt)
and everything else ηt := ϕ(xt). Our algorithm proceeds as follows.

We assume the existence of an invariant state embedding, whose mapping function we denote by
φ : X 7→ Z . We also assume an invariant dynamics model fs : A × Z 7→ Z , a task-specific
dynamics model fη : A × H 7→ H, and an invariant reward model r : Z × A × Z 7→ R in the
embedding space. To incorporate a meaningful objective and ground the learned representation, we
need a decoder φ−1 : Z×H 7→ X . We assume N > 1 training environments are given. The overall
dynamics and reward objectives become

JD(φ, ψ, fs, fη) =
∑
i

Eπbi
[
(φ−1(fs(a, φ(xi)), fη(a, ψ(xi)))− x′i)2

]
,

JR(φ,R) =
∑
i

Eπbi
[
(R(φ(xi), a, φ(x′i))− r′i)2

]
,

under data collected from behavioral policies πbi for each experimental setting.

Of course, this does not guarantee that the representation learned by φ will be minimal, so we
incorporate additional regularization as an incentive. We train a task classifier on the shared latent
representationC : Z 7→ [0, 1]N with cross-entropy loss and employ an adversarial loss (Tzeng et al.,
2017) on φ to maximize the entropy of the classifier output to ensure task specific information is not
passing through to Z . This gives us a final objective

JALL(φ, ψ, fs, fη, r) = JD(φ, ψ, fs, fη) + αRJR(φ, r)− αCH(C(φ)), (5)

where αR and αC are hyperparameters and H denotes entropy (Algorithm 2).

7 RESULTS

Figure 2: The presence of spuri-
ous uncorrelated variables in the state
can still lead to poor generalization
of linear methods. ICP methods can
eliminate these spurious variables alto-
gether.

We evaluate both linear and non-linear versions of MISA, in
corresponding Block MDP settings with both linear and non-
linear dynamics. We examine model error in dynamics model
learning, actor error in imitation learning, and end-to-end re-
inforcement in the presence of correlated noise.

7.1 MODEL LEARNING

Linear Setting. We first evaluate the linear MISA algorithm
in Appendix C. To empirically evaluate whether eliminating
spurious variables from a representation is necessary to guar-
antee generalization, we consider a simple family of MDPs
with state space X = {(x1, x2, x3)}, with a transition dynam-
ics structure such that xt+1

1 = xt1 + εe1, xt+1
2 = xt1 + εe2, and

xt+1
3 = xt3 + εe3. We train on 3 environments with soft inter-

ventions on each noise variable. We then run the linear MISA algorithm on batch data from these 3
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environments to get a state abstraction φ(x) = {x1, x2}, and then train 2 linear predictors on φ(x)
and x. We then evaluate the generalization performance for novel environments that correspond to
different hard interventions on the value of the x3 variable. We observe that the predictor trained on
φ(x) attains zero generalization error because it zeros out x3 automatically. However, any nonzero
weight on x3 in the least-squares predictor will lead to arbitrarily large generalization error, which
is precisely what we observe in Figure 2.
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Figure 3: Model error on evaluation envi-
ronments on Cheetah Run from Deepmind
Control. 10 seeds, with one standard error
shaded.

Rich Observation Setting. We next test the gradient-
based MISA method (Algorithm 2) in a setting with non-
linear dynamics and rich observations. Instead of hav-
ing access to observation variables and selecting the min-
imal causal feature set, we are tasked with learning the in-
variant causal representation. We randomly initialize the
background color of two train environments from Deep-
mind Control (Tassa et al., 2018) from range [0, 255].
We also randomly initialize another two backgrounds for
evaluation. The orange line in Figure 3 shows perfor-
mance on the evaluation environments in comparison to
three baselines. In the first, we only train on a single en-
vironment and test on another with our method, (MISA - 1 env). Without more than a single
experiment to observe at training time, there is no way to disentangle what is causal in terms of
dynamics, and what is not. In the second baseline, we combine data from the two environments and
train a model over all data (Baseline - 1 decoder). The third is another invariance-based
method which uses a gradient penalty, IRM (?). In the second case the error is tempered by seeing
variance in the two environments at training time, but it is not as effective as MISA with two envi-
ronments at disentangling what is invariant, and therefore causal with respect to dynamics, and what
is not. With IRM, the loss starts much higher but very slowly decreases, and we find it is very brittle
to tune in practice. Implementation details found in Appendix D.1.

7.2 IMITATION LEARNING
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Figure 4: The cheetah run env from
DMC with different camera angles. The first
two images are from training envs and the
last image is from eval. (top). Actor error
on eval, 10 seeds, with one standard error
shaded (bottom).

In this setup, we first train an expert policy using the pro-
prioceptive state of Cheetah Run from (Tassa et al., 2018).
We then use this policy to collect a dataset for imitation
learning in each of two training environments. When ren-
dering these low dimensional images, we alter the cam-
era angles in the different environments (Figure 4, top).
We report the generalization performance as the test er-
ror when predicting actions in Figure 4. While we see
test error does increase with our method, MISA, the er-
ror growth is significantly slower compared to single task
and multi-task baselines.

7.3 REINFORCEMENT LEARNING

We go back to the proprioceptive state in the
cartpole swingup environment in Deepmind Con-
trol (Tassa et al., 2018) to show that we can learn MISA
while training a policy. We use Soft Actor Critic (Haarnoja et al., 2018) with an additional linear
encoder, and add spurious correlated dimensions which are a multiplicative factor of the original
state space. We also add an additional environment identifier to the observation. This multiplicative
factor varies across environments, and we train on two environments with 1× and 2×, and test on
3×. We incorporate noise on the causal state to make the task harder, specifically Gaussian noise
N (0, 0.01) to the true state dimension. This incentivizes the agent to attend to the spuriously corre-
lated dimension instead, which has no noise. In Figure 5 we see the generalization gap drastically
improve with our method in comparison to training SAC with data over all environments in aggre-
gate and with IRM (Arjovsky et al., 2019) implemented on the critic loss. Implementation details
and more information about Soft Actor Critic can be found in Appendix D.2.
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8 RELATED WORK
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Figure 5: Generalization gap in SAC per-
formance with 2 training environments on
cartpole swingup from DMC. Evalu-
ated with 10 seeds, standard error shaded.

Prior Work on Generalization Bounds. Generaliza-
tion bounds provide guarantees on the test set error at-
tained by an algorithm. Most of these bounds are proba-
bilistic and targeted at the supervised setting, falling into
the PAC (Probably Approximately Correct) framework.
PAC bounds give probabilistic guarantees on a model’s
true error as a function of its train set error and the
complexity of the function class encoded by the model.
Many measures of hypothesis class complexity exist: the
Vapnik-Chernovenkis (VC) dimension (Vapnik & Cher-
vonenkis, 1971), the Lipschitz constant, and classification margin of a neural network (Bartlett et al.,
2017b), and second-order properties of the loss landscape (Neyshabur et al., 2019) are just a few of
many.

Analogous techniques can be applied to Bayesian methods, giving rise to PAC-Bayes
bounds (McAllester, 1999). This family of bounds can be optimized to yield non-vacuous bounds on
the test error of over-parametrized neural networks (Dziugaite & Roy, 2017), and have demonstrated
strong empirical correlation with model generalization (Jiang* et al., 2020). More recently, Amit &
Meir (2018); Yin et al. (2019) introduce a PAC-Bayes bound for the multi-task setting dependent on
the number of tasks seen at training time.

Strehl et al. (2006) extend PAC framework to reinforcement learning, defining a new class of bounds
called PAC-MDP. An algorithm is PAC-MDP if for any ε and δ, the sample complexity of the
algorithm is less than some polynomial in (S,A, 1/ε, 1/δ, 1/(1− γ)) with probability at least 1− δ.
The authors provide a PAC-MDP algorithm for model-free Q-learning. Lattimore & Hutter (2012)
offers lower and upper bounds on the sample complexity of learning near-optimal behavior in MDPs
by modifying the Upper Confidence RL (UCRL) algorithm (Jaksch et al., 2010).

Multi-Task Reinforcement Learning. Teh et al. (2017); Borsa et al. (2016) handle multi-task
reinforcement learning with a shared “distilled” policy (Teh et al., 2017) and shared state-action
representation (Borsa et al., 2016) to capture common or invariant behavior across all tasks. No
assumptions are made about how these tasks relate to each other other than a shared state and action
space. D’Eramo et al. (2020) show the benefits of learning a shared representation in multi-task
settings with an approximate value iteration bound and Brunskill & Li (2013) also demonstrate a
PAC-MDP algorithm with improved sample efficiency bounds through transfer across similar tasks.
Again, none of these works look to the multi-environment setting to explicitly leverage environment
structure. Barreto et al. (2017) exploit successor features for transfer, making the assumption that
the dynamics across tasks are the same, but the reward changes. However, they do not handle the
setting where states are latent, and observations change.

9 DISCUSSION

This work has demonstrated that given certain assumptions, we can use causal inference methods
in reinforcement learning to learn an invariant causal representation that generalizes across envi-
ronments with a shared causal structure. We have provided a framework for defining families of
environments, and methods, for both the low dimensional linear value function approximation set-
ting and the deep RL setting, which leverage invariant prediction to extract a causal representation
of the state. We have further provided error bounds and identifiability results for these represen-
tations. We see this paper as a first step towards the more significant problem of learning useful
representations for generalization across a broader class of environments. Some examples of poten-
tial applications include third-person imitation learning, sim2real transfer, and, related to sim2real
transfer, the use of privileged information in one task (the simulation) as grounding and generaliza-
tion to new observation spaces (Salter et al., 2019).
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A NOTATION

We provide a summary of key notation used throughout the paper here.

PAG(X) : the parents of node X in the causal graph G. When G is clear from the setting,
abbreviate this notation to PA(X).

ANG(X) : the ancestors of node X in G (again, G omitted when unambiguous).
[x]S :[xi1 , . . . , xik |ij ∈ S]

πM : the stationary distribution given by some fixed policy in an MDP M .
q : the emission function of a block MDP.
E : a set of environments.

B PROOFS

Technical notes and assumptions. In order for the block MDP assumption to be satisfied, we will
require that the interventions defining each environment only occur outside of the causal ancestors of
the reward. Otherwise, the different environments will have different latent state dynamics, which
violates our assumption that the environments are obtained by an noisy emission function from
the latent state space S. Although ICP will still find the correct causal variables in this setting,
this state abstraction will no longer be a model irrelevance state abstraction over the union of the
environments.

Figure 6: Graphical causal models with temporal dependence – note that while x2 (circled in blue) is the only
causal parent of the reward, because its next-timestep distribution depends on x1, a model-irrelevance state
abstraction must include both variables. Shaded in blue: the graphical causal model of an MDP with states
s = (x1, x2) when ignoring timesteps.

Theorem 1. Consider a family of MDPs ME = {(X , A,R, Pe, γ)|e ∈ E}, with X = Rk. Let ME
satisfy Assumptions 1-3. Let SR ⊆ {1, . . . , k} be the set of variables such that the reward R(x, a)
is a function only of [x]SR (x restricted to the indices in SR). Then let S = AN(R) denote the
ancestors of SR in the (fully observable) causal graph corresponding to the transition dynamics of
ME . Then the state abstraction φS(x) = [x]S is a model-irrelevance abstraction for every e ∈ E .

Proof. To prove that φS is a model-irrelevance abstraction, we must first show that r(x) =
r(x′) for any x, x′ : φS(x) = φS(x′). For this, we note that E[R(x)] =

∫
r∈R rdp(r|x) =∫

r∈R rdp(r|[x]S , [x]SC ) and, because by definition SC ⊂ PA(R)C , we have thatR ⊥ [x]SC . There-
fore,

E[R(x)] =

∫
r∈R

rdp(r|[x]S) =

∫
r∈R

rdp(r|[x′]S) = E[R(x′)]. (6)

To show that [x]S is a MISA, we must also show that for any x1, x2 such that φ(x1) = φ(x2), and
for any e ∈ E , the distribution over next state equivalence classes will be equal for x1 and x2.∑

x′∈φ−1(X̄)

P ex1x′ =
∑

x′∈φ−1(X̄)

P ex2x′ .

12



Under review as a conference paper at ICLR 2020

For this, it suffices to observe that S is closed under taking parents in the causal graph, and that by
construction environments only contain interventions on variables outside of the causal set. Specifi-
cally, we observe that the probability of seeing any particular equivalence class [x′]S after state x is
only a function of [x]S .

P ([x′]S |x) = f([x]S , [x
′]S)

This allows us to define a natural decomposition of the transition function as follows.

P (x′|x) = P

(
[x]S ⊕ [x]SC

∣∣∣∣[x′]S ⊕ [x′]SC

)
which by the independent noise assumption gives

P (x′|x) = f([x′]S , [x]S)P ([x′]Sc |x)

We further observe that since the components of x are independent,
∑

[x′]SC
P ([x′]SC |x) = 1. We

now return to the property we want to show:∑
x′∈φ−1(x̄)

P ex1x′ =
∑

x′∈φ−1(x̄)

f([x1]S , [x
′]S)P (x′|x1)

= f(φ(x1), x̄)
∑

[x′]SC

P

(
[x′]SC

∣∣∣∣x1

)
= f(φ(x1), x̄)

and because φ(x1) = φ(x2), we have

= f(φ(x2), x̄)

for which we can apply the previous chain of equalities backward to obtain

=
∑

x′∈φ−1(x̄)

P ex2x′

Proposition 1 (Identifiability and Uniqueness of Causal State Abstraction). In the setting of the
previous theorem, assume the transition dynamics and reward are linear functions of the current
state. If the training environment set Etrain satisfies any of the conditions of Theorem 2 (Peters
et al., 2016) with respect to each variable in AN(R), then the causal feature set φS is identifiable.
Conversely, if the training environments don’t contain sufficient interventions, then it may be that
there exists a φ such that φ is a model irrelevance abstraction over Etrain, but not over E globally.

Proof. The proof of the first statement follows immediately from the iterative application of the
identifiability result of Peters et al. (2016) to each variable in the causal variables set.

For the converse, we consider a simple counterexample in which one variable xm is constant in
every training environment, with value vm. Then letting S = AN(R), we observe that S ∪ {m} is
also a model-irrelevance state abstraction.

First, we show r(x1) = r(x2) for any x1, x2 : φS∪{m}(x1) = φS∪{m}(x2).

p(R|x1, a) = p(R|x1|S , a)

= p(R|x1|S∪{m}, a,m = vm)

= p(R|(x2|S∪{m}, a,m = vm)

= p(R|x2, a)

Finally, we must show that ∑
x′∈φ−1

S∪{m}(X̄)

Px1x′ =
∑

x′∈φ−1
S∪{m}(X̄)

Px2x′ .
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Again starting from the result of Theorem 1 we have:∑
x′∈φ−1

S∪{m}(x̄)

Px1x′ =
∑

x′∈φ−1
S∪{m}(x̄)

f(x1|S∪{m}, x′|S∪{m})p(x′|x1|(S∪{m})C ,m = vm)

= f(φS∪{m}(x1), x̄)
∑

x′∈φ−1
S∪{m}(x̄)

p(x′|x1,m = vm)

= f(φS∪{m}(x1), x̄)

and because φS∪{m}(x1) = φS∪{m}(x2), we have

= f(φS∪{m}(x2), x̄)

for which we can apply the previous chain of equalities backward to obtain

=
∑

x′∈φ−1
S∪{m}(x̄)

Px2x′

However, if one of the test environments contains the intervention xm ← vm + N (0, σ2), then
the distribution over next-states in the new environment will violate the conditions for a model-
irrelevance abstraction.

Theorem 2. Let M1 and M2 be two environments satisfying Assumption 1, and let φ : X → Z be
a model-irrelevance abstraction for M1 and M2. Let the union of the environments’ state transition
functions T1 and T2 be L-lipschitz with respect to the state embedding φ(·), and T be an arbitrary
learned transition function defined on Z which is also L-lipschitz. We use πφ(M) to denote the
stationary abstract state distribution on an environment M with respect to a fixed arbitrary policy.
Setting the expected error of T on M1 as Ex∼π(M1)[‖T (φ(x)) − φ(T1(x))‖ = δ, we have the
following bound on the error of T in M2

Ex∼π(M2)[‖T (φ(x))− φ(T2(x))‖] ≤ δ + 2LW1(πφ(M1), πφ(M2)). (7)

We explicitly write M1 = (X1,A, R, T1, γ), with M2 analogous. We will use the shorthand π for
πφ(M), the distribution of state embeddings φ(M) corresponding to the behaviour policy, and π′ for
πφ(M ′) for the distribution of state embeddings φ(M ′) given by the behaviour policy.

Proof. We decompose the error obtained by the model T on a state x in X2 into three components:
first, we find the closest point y ∈ X1 and take the model error on y. We then bound the gap between
the model’s prediction for y and its prediction for x by the Lipschitz constant, and then do this again
for the difference in the true transition dynamics between x and y (which we know are bounded
because we constrained the union of the two transition functions to be Lipschitz on X ).

Ex∼π(M2)[‖T (φ(x))− φ(T2(x))‖] = Ex∼π(M2)

[
min
y∈X1

‖T (φ(x))− T (φ(y)) + T (φ(y))− φ(T2(x))‖
]

≤ Ex∼π(M2)

[
min
y∈XM

‖T (φ(x))− T (φ(y))‖

+ ‖T (φ(y))− φ(T1(y))‖+ ‖φ(T1(y))− φ(T2(x))‖
]

Let γ be a coupling over the distributions of φ(M2) and φ(M) such that Eγ(φ(x),φ(y))‖φ(x) −
φ(y)‖ = W1(πφ(M1), πφ(M1)).

≤ Ex∼π(M2)[Eγ(φ(y)|φ(x))‖T (φ(x))− T (φ(y))‖] + δ + L‖x− y‖]
≤ Ex∼π(M2)[Eγ(φ(y)|φ(x))L‖φ(x)− φ(y)‖+ δ + L‖φ(x)− φ(y)‖]
= Eγ(φ(x),φ(y))[L‖φ(x)− φ(y)‖+ δ + L‖φ(x)− φ(y)‖]
= 2LW1(π, π′) + δ

14



Under review as a conference paper at ICLR 2020

Theorem 4 (Existence of model-irrelevance state abstractions). Let E denote some family of bisimi-
lar MDPs with joint state spaceXE = ∪e∈EXe. Let the mapping from states inMe to the underlying
abstract MDP M̄ be denoted by fe. Then if the states in XE satisfy x ∈ Xe′ ∩Xe =⇒ fe(x) =
fe′(x), then φ = ∪fe is a model-irrelevant state abstraction for E .

Proof. First, note that ∪fe is well-defined (because each f agrees with the rest on the value of all
states appearing in multiple tasks). Then φ will be a model-irrelevant abstraction for every MDPMe

because it agrees with fe (a model-irrelevant abstraction).

Theorem 3. Let M be our block MDP and M̄ the learned invariant MDP with a mapping φ : X 7→
Z . For any L-Lipschitz valued policy π the value difference is bounded by

|Qπ(x, a)− Q̄π(φ(x), a)| ≤ J∞R + γLJ∞D
1− γ

. (8)

Proof.

sup
xt∈X ,at∈A

|Qπ(xt, at)− Q̄π(φ(xt), at)|

≤ sup
xt∈X ,at∈A

|R(φ(xt), a, φ(xt+1))− r(x, a)|

+ γ sup
xt∈X ,at∈A

|Ext+1∼P (·|xt,at)V
π(xt+1)− Ezt+1∼f(·|φ(xt),at)V̄

π(zt+1)|

= J∞R + γ sup
xt∈X ,at∈A

∣∣Ext+1∼P (·|xt,at)[V
π(xt+1)− V̄ π(φ(xt+1))]

+ E xt+1∼P (·|xt,at)
zt+1∼f(·|φ(xt),at)

[V̄ π(φ(xt+1))− V̄ π(zt+1)]
∣∣

≤ J∞R + γ sup
xt∈X ,at∈A

∣∣Ext+1∼P (·|xt,at)[V
π(xt+1)− V̄ π(φ(xt+1))]

∣∣
+ γ sup

xt∈X ,at∈A

∣∣E xt+1∼P (·|xt,at)
zt+1∼f(·|φ(xt),at)

[V̄ π(φ(xt+1))− V̄ π(zt+1)]
∣∣

≤ J∞R + γ sup
xt∈X ,at∈A

∣∣Ext+1∼P (·|xt,at)[V
π(xt+1)− V̄ π(φ(xt+1))]

∣∣
+ γL sup

xt∈X ,at∈A
W (φ(P (·|xt, at)), f(·|φ(xt), at))

= J∞R + γ sup
xt∈X ,at∈A

∣∣Ext+1∼P (·|xt,at)[V
π(xt+1)− V̄ π(φ(xt+1))]

∣∣+ γLJ∞D

≤ J∞R + γ sup
xt∈X ,at∈A

Ext+1∼P (·|xt,at)
∣∣[V π(xt+1)− V̄ π(φ(xt+1))]

∣∣+ γLJ∞D

≤ J∞R + γ sup
xt∈X ,at∈A

∣∣[V π(xt)− V̄ π(φ(xt))]
∣∣+ γLJ∞D

≤ J∞R + γ sup
xt∈X ,at∈A

∣∣[Qπ(xt−1, at−1)− Q̄π(φ(xt−1), at−1)]
∣∣+ γLJ∞D

=
J∞R + γLJ∞D

1− γ

Proposition 2 (Lower bound on abstraction error). Let fe be a mapping from S → X . Fix some
arbitrary policy ρ and let v(s) denote the value of state s under ρ, with π its stationary distribution.
If ∃ e, e′, s, s′ such that fe(s) = fe′(s

′) (i.e. different states induce the same observation), then
the following bound is a lower bound on the error obtained by a joint state abstraction over all
environments.

min
v̂

1

|E|
∑
e∈E

err(φ(Xe), v̂) ≥ min
s,s′:v(s) 6=v(s′)

(
|v(s)−v(s′)|

)
PE

(
(φ(x) 6= f−1

e (x)

)
≥ δH(V (S)|X)− 1

log |V (S)|
(9)
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Where
err(φ(Xe), v̂) := Eπ(Xe)|v̂(φ(x))− v(f−1

e (x))|
and

δ = min
s,s′:v(s)6=v(s′)

(
|v(s)− v(s′)|

)

Proof. (Sketch) The error obtained by state abstraction will be at least the decoding error of values
from abstract states scaled by δ. This in turn depends on how effectively it is possible to decode
a potentially lossy mapping from observations back to states. This leads to the second inequality,
due to Fano, where the entropy H(V (S)|X) is given by marginalizatiion with respect to v(s) of the
following probability distributions.

p(x) =
1

|E|
∑
s,e

1[fe(s) = x]π(s)

p(s|x) =
1

p(x)

1

|E|
∑
e

π(s)

C ALGORITHMS

Result: S ⊂ {1, . . . , k}, the causal state variables
Input: α, a confidence parameter, D, an replay buffer with observations X . S ← ∅;
stack← r ;
while stack is not empty do

v = stack.pop();
if v 6∈ S then

S′ ← ICP(v, D, α
dim(X ) );

S ← S ∪ S′;
stack.push(S′)

end
end

Algorithm 1: Linear MISA: Model-irrelevant State Abstractions

Result: φ, an invariant state encoder
π ← π0;
φ, fs ← φ0, fs,0 ;
ψe, feη ← ψe0, f

e
η,0 for e ∈ E ;

De ← ∅ for e ∈ E ;
while forever do

for e ∈ E do
a← π(xe);
x′e, r ← step(xe, a) ;
store(xe, a, r, x

′
e) ;

end
for e ∈ E do

Sample batch Xe from De ;
feη , ψ

e ← ∇feη ,ψe [JD(Xe)] ;
end
fs, φ, r ←

∑
Xe
∇fs,φ[JALL(Xe)];

C ← ∇C ;
CE loss(C(φ({xe}e∈E), {e}e∈E) ;

end
Algorithm 2: Nonlinear Model-irrelevance State Abstraction (MISA) Learning
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D IMPLEMENTATION DETAILS

D.1 MODEL LEARNING: RICH OBSERVATIONS

For the model learning experiments we use an almost identical encoder architecture as in Tassa et al.
(2018), with two more convolutional layers to the convnet trunk. Secondly, we use ReLU activations
after each convolutional layer, instead of ELU. We use kernels of size 3× 3 with 32 channels for all
the convolutional layers and set stride to 1 everywhere, except of the first convolutional layer, which
has stride 2. We then take the output of the convolutional net and feed it into a single fully-connected
layer normalized by LayerNorm (Ba et al., 2016). Finally, we add tanh nonlinearity to the 50
dimensional output of the fully-connected layer.

The decoder consists of one fully-connected layer that is then followed by four deconvolutional
layers. We use ReLU activations after each layer, except the final deconvolutional layer that produces
pixels representation. Each deconvolutional layer has kernels of size 3 × 3 with 32 channels and
stride 1, except of the last layer, where stride is 2.

The dynamics and reward models are all MLPs with two hidden layers with 200 neurons each and
ReLU activations.

D.2 REINFORCEMENT LEARNING

For the reinforcement learning experiments we modify the Soft Actor-Critic PyTorch implementa-
tion by Yarats & Kostrikov (2020) and augment with a shared encoder between the actor and critic,
the general model fs and task-specific models feη . The forward models are multi-layer perceptions
with ReLU non-linearities and two hidden layers of 200 neurons each. The encoder is a linear layer
that maps to a 50-dim hidden representation. We also use L1 regularization on the S latent represen-
tation. We add two additional dimensions to the state space, a spurious correlation dimension that
is a multiplicative factor of the last dimension of the ground truth state, as well as an environment
id. We add Gaussian noiseN (0, 0.01) to the original state dimension, similar to how Arjovsky et al.
(2019) incorporate noise in the label to make the task harder for the baseline.

Soft Actor Critic (SAC) (Haarnoja et al., 2018) is an off-policy actor-critic method that uses the max-
imum entropy framework to derive soft policy iteration. At each iteration, SAC performs soft policy
evaluation and improvement steps. The policy evaluation step fits a parametric soft Q-function
Q(xt, at) using transitions sampled from the replay buffer D by minimizing the soft Bellman resid-
ual,

J(Q) = E(xt,xt,rt,xt+1)∼D

[(
Q(xt, at)− rt − γV̄ (xt+1)

)2]
.

The target value function V̄ is approximated via a Monte-Carlo estimate of the following expecta-
tion,

V̄ (xt+1) = Eat+1∼π
[
Q̄(xt+1, at+1)− α log π(at+1|xt+1)

]
,

where Q̄ is the target soft Q-function parameterized by a weight vector obtained from an exponen-
tially moving average of the Q-function weights to stabilize training. The policy improvement step
then attempts to project a parametric policy π(at|xt) by minimizing KL divergence between the
policy and a Boltzmann distribution induced by the Q-function, producing the following objective,

J(π) = Ext∼D
[
Eat∼π[α log(π(at|xt))−Q(xt, at)]

]
.

We provide the hyperparameters used for the RL experiments in Table 1.

E ADDITIONAL RESULTS

E.1 REINFORCEMENT LEARNING

We find that even without noise on the ground truth states, with only two environments, baseline
SAC fails.
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Figure 7: Generalization gap in SAC performance with 2 training environments on Cartpole
Swingup from DMC. Evaluated with 10 seeds, standard error shaded.

Parameter name Value
Replay buffer capacity 1000000
Batch size 1024
Discount γ 0.99
Optimizer Adam
Critic learning rate 10−5

Critic target update frequency 2
Critic Q-function soft-update rate τQ 0.005
Critic encoder soft-update rate τenc 0.005
Actor learning rate 10−5

Actor update frequency 2
Actor log stddev bounds [−5, 2]
Encoder learning rate 10−5

Decoder learning rate 10−5

Decoder weight decay 10−7

L1 regularization weight 10−5

Temperature learning rate 10−4

Temperature Adam’s β1 0.9
Init temperature 0.1

Table 1: A complete overview of used hyper parameters.
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