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ABSTRACT

Individual Treatment Effect (ITE) estimation is an extensively researched problem,
with applications in various domains. We model the case where observable inter-
ference might happen between the treatment prescription and its effect, a typical
situation in health (because of non-compliance to prescription) or digital advertis-
ing (because of competition and ad blockers for instance). When the interference
level is high, the ITE signal fades and becomes hard to learn. To solve this problem,
we propose a new approach to estimate ITE that takes advantage of observable
interference to reduce variance, all the more that the interference is high. We use
the Structural Causal Model framework and do-calculus to define a setting under
which this estimator indeed recovers the ITE, and study its asymptotic variance.
Finally, we conduct extensive experiments on both synthetic and real-world dataset
that highlight the benefit of the approach, which outperforms state-of-the-art on
PEHE and AUUC.

1 INTRODUCTION

Individual Treatment Effect (ITE) estimation is an important task in various applications such as
healthcare Foster et al. (2011), online advertising Diemert et al. (2018) and socio-economics Xie et al.
(2012). The the causal effect of T on outcome Y conditionally to context X can be thought of as a
contextual counterpart of the usual Average Treatment Effect (cf. Equation 1, assuming randomized
treatment).

ATE = E[Y |T = 1]� E[Y |T = 0]

ITE(x) = E[Y |X = x, T = 1]� E[Y |X = x, T = 0]
(1)

However there often exists a risk of interference between the treatment prescription (T ) and its actual
acceptance (M ) as illustrated in Table 1. This happens for instance when individuals have the choice
not to abide by the prescription or if there exists conflicting interests. Of course one can choose to
focus the study on actually treated individuals only. But from a decision making point of view it
often makes sense to consider that future treatment decisions need to take into account the level of
interference so as to accurately predict future expected outcomes. For example a policy maker would
want to take into account that not all individuals would abide by the new policy (as can be estimated
from a pilot study) to predict the expected impact of a roll-out of said policy. Now we argue that ITE
estimation can be hampered by interference. Firstly note that individuals whose treatment has been

Table 1: Examples of covariates (X), outcome (Y ), treatment assignment (T ), reason for not abiding
to treatment (R) and evidence of treatment acceptance (M )

VAR. MEDICINE ONLINE ADV. JOB TRAINING

X patient info purchase history schooling
T drug prescription bid placement training offer
R reluctance competition disease
M drug intake ad displayed training done
Y recovery sale/visit employment
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interfered with contribute only noise to the default ITE estimator as their observed outcome is not
effectively influenced. Therefore the variance of the estimator increases with the interference level. A
classical move in statistics would be to build a stratified estimator on the interference variable. But
we will see in Section 3 that even when observing data from a randomized experiment one needs
additional assumptions to build a consistent estimator that recovers the causal effect of T on Y .

Besides, ITE models1 are often considered as prescriptive tools. Indeed, ITE predictions are used
in order to target treatment to individuals for which it is the most beneficial (Devriendt et al., 2018;
Radcliffe & Surry, 2011). This calls for an evaluation metric that measures by how much the ATE
would have been improved had the treatment been targeted not by a random instrument, but by ITE
predictions instead. For that purpose (Rzepakowski & Jaroszewicz, 2012; 2010; Radcliffe & Surry,
2011) have proposed the Area Under the Uplift Curve (AUUC) metric that sums the benefits over
individuals ranked by predictions. An interesting property of this metric is that it can be used on real
data for which we observe a given individual in either treated or untreated conditions but never both.

Confronted with the challenges of i) learning ITE models in conditions of interference and ii)
evaluating them as prescriptive tools we propose to pose the problem in the setting of causal inference
and derive an ITE estimator that takes advantage of observed interference. Our main contributions
are as follows.

1. Formalization of ITE estimation in presence of observable interference using structural
causal models (Section 3)

2. Proposition of an ITE meta-estimator in which can be plugged existing ITE estimators ,
proof of consistency and asymptotic variance properties (Section 4)

3. Thorough empirical evaluation of this estimator on synthetic and real world datasets (Sec-
tion 5)

2 RELATED WORKS

We review three main domains that are concerned with research questions similar to our work: ITE
modeling, interference in causal inference and evaluation metrics for ITE modeling.

Firstly, we note that ITE models are a pervasive concept in different research fields such as marketing
- under the name uplift models Radcliffe & Surry (2011), statistics - as conditional average treatment
effect estimators Künzel et al. (2019) or econometrics - heterogeneous treatment effect models (Jacob
et al., 2019; Wager & Athey, 2018). A simple yet highly scalable approach consists in learning a
regression of Y on X separately in both treatment (T = 1) and control (T = 0) populations and
return the difference, known as T-learner Künzel et al. (2019) or ”Two Models” Radcliffe & Surry
(2011). A variation of this approach with larger model capacity have been proposed through a shared
representation (SDR) for the treatment and control group Betlei et al. (2018). Also, a prolific series of
work exists on adapting decision trees and random forests to the causal inference framework Athey &
Imbens (2016); Wager & Athey (2018); Athey et al. (2019). Further in the same vein and building
on work done on double machine learning by Chernozhukov et al. (2018), Oprescu et al. (2019)
generalize the idea of causal forests, allowing for high-dimensional confounding. Finally, another
recent trend is to study theoretical limits in ITE estimation and especially generalization bounds
Shalit et al. (2017); Alaa & Van Der Schaar (2018).

Then regarding the concept of observable interference, algorithms have been studied that focus on
recovering the (individual) causal effect of M on Y , but they do not take into account the problem of
interference between the treatment assignment T and its acceptation M . Such observable interference
can typically correspond to non-compliance. However, to our knowledge works tackling this problem
focus on effect of the treatment intake M � and not the treatment assignment T � on the outcome Y
Gordon et al. (2019). In that context, the effect of T on Y , sometimes referred to as the intention-to-
treat (ITT) effect, is typically used in an instrumental variable framework to recover the effect of M
on Y Imbens & Angrist (1994); Syrgkanis et al. (2019). In the contrary, we focus in this work on the
effect of the treatment assignation T on the variable Y , taking advantage of the observed interference
M .
The idea of taking advantage of a mediation variable to recover individual treatment effect has

1also called uplift models in marketing literature.
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been explored notably by Hill et al. (2015), however the associated assumptions (M and Y are
unconfounded) are more restrictive than the ones we propose, as we do not require the binary
mediation variable M (representing the interference) to be unconfounded with Y . We do however
assume that it satisfies a strong monotonicity assumption with respect to the binary variable T , i.e.
T = 0 ) M = 0: an analogous assumption is referred to as one-sided non-compliance by Gordon
et al. (2019).
Similar monotonicity assumptions are typically made in causal inference works but concern the
causal effect: the outcome Y is assumed to be monotonous with respect to the treatment T Kallus
(2019); Oberst & Sontag (2019).

Finally, many research works validate their approach using synthetic data, in which a pointwise error
measure named Precision Estimation of Heterogeneous Effect (PEHE) Shalit et al. (2017) can be
computed. However in real world cases, the fundamental problem of causal inference states that the
ground truth of individual treatment effect cannot be observed (since an individual is either treated or
untreated but never both at the same time), preventing to use such metrics beyond simulation studies.
Since our main motivation is to determine which individuals are good candidates for treatment
assignment, we choose to evaluate the performance of our estimators on real data using the AUUC,
which evaluates the ranking of individuals implied by corresponding ITE predictions. One can view
the resulting measure as a prediction of the expected benefit of assigning treatment according to the
model prediction instead of a random uniform assignment. Overall AUUC has been used in recent
years in machine learning research to evaluate baseline ITE models vs SDR Diemert et al. (2018),
flavors of Support Vector Machines for ITE estimation Kuusisto et al. (2014) or direct treatment
policy optimization Yamane et al. (2018). For completeness a variant normalized by the ranking of
an oracle model exists also under the name Qini coefficient Radcliffe & Surry (2011).

3 FRAMEWORK

The approach we are presenting here strongly relies on causality notions such as structural causal
model, causal graph, intervention and valid adjustment set. The formalism we use through the paper
is strongly inspired by Peters et al. (2017). Notations. For sake of compactness, we use the following
notations for any binary variable W and multi-dimensional variable X: P(W ) , P(W = 1),
P(W ) , P(W = 0), P(x) , P(X = x), PC;do(W )

(.) , PC;do(W :=1)
(.).

3.1 THE OBSERVABLE INTERFERENCE SETTING

The setting of observable interference we consider in this work is entirely defined by a SCM of
variables X,T,M, Y, U for which example values where proposed in Table 1: X , belonging to a
multi-dimensional space X , contains the individual’s descriptive features (by simplicity, we will
confuse the individual and their features, referring for example to ‘an individual x’), T is the binary
treatment assignment variable, M is the binary mediation variable, corresponding to the treatment
acceptation, i.e. the fact that the individual did not interfere with their treatment prescription, Y is the
binary outcome variable, U represents (allowed) unobserved confounders between X and Y .

In what follows, we define the structural causal model C = (S,PN), which is henceforth assumed to
represent the causal mechanisms underlying the variables of interest in our work.
S is defined in Equations 2: PN satisfies the following mild conditions: NU , NX , NM , NY are noise

T = ÑT

U = NU

X = fX(U,NX)

M = fM (X,NM )⇥ T

Y = fY (X,M,U,NY ).

(2)
T M Y

X U

Figure 1: Causal graph GC induced by the SCM
C.
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consistent with variables definitions, and ÑT is distributed according to a Bernoulli distribution with
parameter p = PC

(T ), consistent with a randomized controlled experiment setting.

The associated causal graph GC is given in Figure 3.1

In the next proposition, we list four assumptions implied by the C about the variables of interest.

Proposition 1 The SCM C defined in Equations 2 implies the following assumptions on variables T ,
M , Y and X:

(Randomized treatment) T ?? X

(Exclusive mediation) T ?? Y | {X,M}
(Strong mediation monotonicity) T = 0 ) M = 0

(Valid covariate adjustment) {X} is a VAS for (M,Y )

(3)

The fact that C implies the randomized treatment and Exclusive mediation assumptions relies on
the Markov property of the causal graph GC and the notion of d-separation. The Strong mediation
monotonicity is straightforwardly implied by the structural assignment of M given in Equations 2,
while the valid covariate adjustment assumption relies on the back-door criterion (Pearl, 2009; Peters
et al., 2017). The complete proof of Proposition 1, including definitions of the associated notions, is
given in appendix.

3.2 ITE IN PRESENCE OF INTERFERENCE

Notations. For all x 2 X , we define the individual treatment effect ⌧ ITE
(x), treatment effect if

treated ⌧ ITET
(x), as well as the individual non-interference �(x) probability (that we henceforth

refer to as individual compliance for clarity) as follows:

⌧ ITE
(x) = PC;do(T )

(Y |x)� PC;do(T )
(Y |x),

⌧ ITET
(x) = PC;do(M)

(Y |x)� PC;do(M)
(Y |x),

�(x) = PC;do(T )
(M |x).

(4)

We also define the relative ITET �(x) and relative ITE ↵(x) as:

↵(x) =
PC

(Y |T, x)� PC
(Y |T , x)

PC(Y |T , x)
, �(x) =

PC
(Y |M,x)� PC

(Y |M,x)

PC(Y |M,x)
.

The proposed method exploits the mediation variable M , i.e. the treatment acceptation, by splitting
the treatment to outcome path into a product of two subpaths, both with a higher signal-to-noise ratio.
In particular, under C, we can integrate M into the PC;do(T )

(Y |x) expression as presented in the next
lemma.

Lemma 1 Assuming C, and for any x 2 X , the positive outcome probability under treatment,
PC;do(T )

(Y |x), can be written as follows:

PC;do(T )
(Y |x) = PC

(Y |x,M) + PC
(M |x, T )

⇣
PC

(Y |x,M)� PC
(Y |x,M)

⌘
. (5)

The proof of Lemma 1 is fully detailed on appendix. It relies on valid covariate adjustment,
randomized treatment, and exclusive mediation assumptions, that we have proven to be implied by
C in Proposition 1. In a nutshell, the Lemma 1 decomposes the positive outcome probability under
treatment of a given individual as the sum of the organic positive outcome probability and the product
of individual compliance and individual treatment effect if treated.

In Proposition 2, we present a result linking the ITE, the ITET and the individual compliance:

Proposition 2 Assuming C, the ITE decomposes as follows:
⌧ ITE

(x) = ⌧ ITET
(x)�(x) (6)

The proof of Proposition 2 is fully detailed in appendix. It relies on the identity PC;do(T )
(Y |x) =

PC
(Y |x,M), which holds under C thanks to the exclusive mediation and strong mediation mono-

tonicity assumptions.
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4 PROPOSED APPROACH

The expression proven in Proposition 2 calls for a novel way to estimate individual treatment effect,
by first estimating separately both factors ⌧ ITET

(x) and �(x), then multiplying these estimators to
form a post-mediation individual treatment effect (MITE) estimator.
Formally, let ⌧̂ ITET be an estimator of ⌧ ITET , let �̂ be an estimator of �. We then define the
associated MITE estimator ⌧̂MITE , for any x, as:

⌧̂MITE
(x) = ⌧̂ ITET

(x)�̂(x). (7)

In practice, ⌧̂ ITET may be obtained using any individual treatment effect estimator. Indeed, under C,
the individual causal effect of M on Y given X is recoverable since {X} is a valid adjustment set for
(M,Y ) as explained in Section 3.

Assuming that x, ⌧̂ ITET
(x) and �̂(x) are consistent estimators of resp. ⌧ ITET

(x) and �(x), Proposi-
tion 2 then ensures that ⌧̂MITE

(x) is a consistent estimator of ⌧ ITE
(x). Thanks to its expression as

a function of a ITET estimator, the MITE estmator focuses on the individuals who actually accepted
treatment, who we know to be the only individuals contributing to the ITE signal (Exclusive mediation
assumption in Equation 3). We therefore expect the MITE estimator to have lower variance than an
ITE estimator which does not exploit the observable interference. Comparing a MITE and an ITE
estimator is all the more fair than we use an analogous version of the ITE estimator for the ITET
estimator the MITE estimator is built on, which we know to be feasible thanks to the valid covariate
adjustment assumption. We refer to this approach as symmetrically learning algorithms comparison,
and use it to conduct our experiments in Section 5.
In the following proposition, we compare the asymptotic variance of estimators ⌧̂MITE and ⌧̂ ITE in
the following simple yet realistic setting:

Single-stratum setting. We focus on the ITE estimation for a single value x0 of X , for which we
assume to observe n i.i.d. samples {(x0, Ti,Mi, Yi)}1in. In practice, this generalises to any
stratum S ⇢ X containing x0 for which the adjustment set formula is valid, i.e. if the variable
X 0 , x0IX2S +XIX/2S defines a valid adjustment set for (M,Y ).

Notations. Consistently with notations presented in Equations 4, ↵(x0),�(x0) refer respectively
to the relative ITE and relative ITET in stratum {X = x0} (and are assumed to be positive in this
illustrative setting), and we denote ⌧̂ ITE

(x0), ⌧̂ ITET
(x0), �̂(x0) the respective maximum-likelihood

estimators (MLE) of ⌧ ITE
(x0), ⌧ ITET

(x0), �(x0). We define the associated MITE estimator as
⌧̂MITE

(x0) , �̂(x0)⌧̂ ITET
(x0). Lastly, we denote p1(x0) = PC

(Y |T, x0).
In the following Proposition, we present an asymptotic bound for the ratio of the standard deviation
(sd) of MITE and ITE estimators.

Proposition 3 Under C defined in Section 3.1 with PC
(T ) = 1

2 , and assuming we observe n i.i.d.
samples in stratum {X = x0}, we have:

lim
n!1

sd(⌧̂MITE
(x0))

sd(⌧̂ ITE(x0))


s✓
2(1 + �(x0))

(1� p1(x0))(2 + ↵(x0))

◆
�. (8)

This theoretical bound shows that the ratio standard deviations of MITE and ITE estimators is all the
more smaller that the non-interference factor �(x0) is low. However, additional assumptions need to
be made about �(x0) and p1(x0) in order to recover an informative bound in practice.

In real-world dataset presented in Section 5, we consistently observe �̂(x)  12 and p̂1(x)  0.05,
where the estimators correspond to logistic regression models fined-tuned following the protocol
described in Section 5.

5 EXPERIMENTS

To qualify the performance of the MITE estimator, we study its benefits in a variety of settings. Firstly
we study its properties on simulation-based studies, hereafter denoted by ‘Synthetic Datasets’, for
which i) the ITE ground truth is known ii) the level of interference can be controlled and iii) we can
appreciate performance with respect to an Oracle. Moreover we apply our approach to transform
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Table 2: Examples of covariates (X), outcome
(Y ), treatment assignment (T ), reason for not
abiding to treatment (R) and evidence of treat-
ment acceptance (M )

TREATMENT (T ) EXPOSURE (M ) OUTCOME (Y )

0 (2’096’236) - 3.82% (79’986)
1 (12’161’477) 3.65% (444’384) 4.93% (599’170)

Table 3: Repartition of visits (Y = 1) on
CRITEO-UPLIFT1 split on exposure groups

EXPOSURE (M ) OUTCOME (Y )

0 (13’813’329) 3.58% (495’003)
1 (444’384) 41.4% (184’153)

baseline ITE estimators and compare their performance on a real-world, large scale, dataset named
‘CRITEO-UPLIFT1 Dataset’2, for which we shall recover the AUUC.

In each experiment we take care of comparing symmetrically learning algorithms for which we
provide or not the MITE estimator decomposition so as to highlight corresponding benefits or
drawbacks. To simplify experiments we chose two base models: Two Models (2M) and SDR as they
easily scale to large datasets and have been found competitive in prior studies Betlei et al. (2018). For
reproducibility sake we have implemented models using Scikit-Learn Python library Pedregosa et al.
(2011). All experiments were run on a machine with 48 CPUs (Intel(R) Xeon(R) Gold 6146 CPU @
3.20GHz), with 2 Threads per core, and 500Go of RAM. Finally, we note that the state of the art is
always evolving and improving. We did not use the most advanced models because we do not aim
at outperforming them. Instead, we claim that the MITE estimator can improve any ITE estimator
(while keeping the same model) in the case of high observable interference.

5.1 DATASETS

SYNTHETIC DATASETS

We define a simulation setting in which X = {0, 1}10, N = 2.106. The response is generated
according to

Y ⇠ Bern (p0 (1 + TM�(x))) , (9)

where T ⇠ Bern(0.5), M ⇠ Bern(�(x)), and p0 = PC
(Y |M,x) = 0.1, using notations

from Equations 4. This procedure allows for varying �(x) and �(x) to simulate different levels of
interference and relative ITET, respectively.

CRITEO-UPLIFT1 DATASET

We use the CRITEO-UPLIFT1 dataset where data were collected using a randomized trial, from
an advertising application. Key statistics for this dataset are summarized in Table 2 and 3. Notably,
average treatment assignment E[T ] ⇡ .85 indicates that only about 15% of users where assigned to
the control group (without any advertisement). The advertisers participated in online ad auctions for
the rest of the population. Among the users that advertisers tried to expose (T = 1), only 3.65% were
actually exposed, which is an extremely high interference rate, expected to highlight MITE estimator
benefits. Effective exposure to ads embodies the M variable in this setup. Treatment assignment and
interference rates are illustrated on Figure 2. The outcome of interest Y is the variable ‘user visiting
the advertiser website’, and its mean is more than 10x higher given actual exposure (M = 1) versus
non-exposure (M = 0).

5.2 EXPERIMENTS

A common procedure for all experiments is to select hyperparameters (regularization norm and
strength) of models using internal cross validation on the training set. For the MITE estimators we
recall that an additional probabilistic model of the compliance �̂(x) is required. For all experiments
it is learned on the training data as a logistic regression. Hyperparameters are selected by internal
cross-validation on the training set by ranking by log-likelihood (LLH) as the model is supposed to
predict a probability.

2http://cail.criteo.com/criteo-uplift-prediction-dataset/
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Figure 2: The visit users repartition is mainly
influenced by the mediation variable M on the
CRITEO-UPLIFT1 dataset
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Figure 3: Interference Sensitivity (Simulation

study). PEHE (lower is better) of ITE vs MITE
models at varying compliance level �. Solid line

represents the median, and dashed line
represents 5% and 95% of confidence intervals.

compliance level � for CRITEO-UPLIFT1.

INTERFERENCE SENSITIVITY EXPERIMENT (SIMULATION)

The goal is to highlight how the interference level 1 � � influences the performance of both
the traditional ITE estimator and MITE estimator. For this purpose we vary � 2 [10

�4
; .99]

and generate synthetic datasets as described in Section 5.1 with one value of � per context in
{�1, 0, 1, 2, 3, 4, 5, 6, 7, 8}. We report the PEHE metric for both estimators and estimate variance by
repeating experiment with 51 random test/train splits. Recall that PEHE is the squared difference
between the ITE ground truth and the prediction of the model.

We observe on Figure 3 that the MITE estimator significantly outperforms the ITE estimator when
the level of interference is high (low �) and has similar performance to baseline ITE when there is no
interference (� close to 1). This shows that our post-mediation approach significantly reduces the
noises due to interference and can learn a smaller signal. This is true in particular for compliance
levels � in the range that is observed on real dataset.

BASELINE EXPERIMENT (SIMULATION)

For the synthetic dataset, the goal is to simulate a realistic scenario where there exists heterogeneity
in interference and post-mediation treatment effects. More precisely, for each instance value x,
we draw once and for all � 2 {0.01, 0.005} and � 2 {�1, 1, 3, 5, 7} uniformly and independently.
Associated outcome is computed according to the synthetic dataset equation (9). We study four
methods: regular two-models (ITE2M), shared data representation (ITESDR) and their variants,
obtained by adding the intermediate variable M (resp. MITE2M, and MITESDR). We focus on
AUUC metric because real-world application cannot access individual treatment effect ground truth.
Recall that AUUC measures the capacity of the model to rank individuals according to their ITE. In
order to make sure that learned models perform better than random, we substract the AUUC of a
random model, obtaining �AUUC. Finally to scale the performance of the latter models, we report
in Figure 4 results for an Oracle model that has access to the drawn (�, �), and for ITEbest, the
best possible learnt model without exploiting the observable interference M (it predicts for each
x its empirical ITE average based on the training set). Again, variance is estimated by repeating
experiment with 51 random test/train splits. Figure 4 assesses the performance of MITE estimators
versus ITE, using the �AUUC metric. They yield a higher �AUUC in more than 90% of the random
splits. Moreover MITE estimators are close to the Oracle (best model possible) as the Oracle does
not significantly outperform them, note that even the Oracle can misrank users because the validation
set is noisy and empirical ITEs do not always follow the expected ranking. Besides, Figure 4 does
not show any limitation of the 2M and SDR models, but rather highlight the ineffectiveness of such
direct ITE estimators if a high interference is observed. This phenomenon can be improved by our
post-mediation approach thanks to the higher signal of the causal effect of M on Y . Of course,
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this synthetic data encodes a simpler setting than real-world data, but the fact that our proposed
post-mediation approach performs that high still confirms our theoretical analysis.

REAL-WORLD EXPERIMENT (CRITEO-UPLIFT1)

To qualify the benefit of MITE versus ITE for real-world applications we report �AUUC on the
CRITEO-UPLIFT1 dataset. We study four methods: two ITE models (ITE2M, and ITESDR) and
their MITE variants (resp. MITE2M, and MITESDR). For the additional �̂(x) model care is taken to
weight the LLH by class as there is a high imbalance in this dataset. Best hyper-parameter found
from the grid search being the Cartesian product of {L1, L2} (regularization) and {0.01, 1, 102, 105}
(C, inverse of regularization strength), is L1 regularization and C = 100. Results are presented on
Figure 5.

The MITE version of each models reduces the variance of the �AUUC estimate. This was expected
and somehow justified in Proposition 3. Moreover, although the confidence intervals are slightly
superposed, MITE always outperforms its ITE counterpart on the 51 splits.

6 CONCLUSION AND FUTURE WORKS

We propose a novel approach on individual treatment effect (ITE) estimation exploiting observable
interference between the treatment assignation and its effect.
Using the structural causal model framework, we define assumptions under which the ITE can be
expressed as a product of the individual treatment effect if treated (ITET) and the individual level
of interference. In this setting, our post-mediation individual treatment effect (MITE) estimator is
consistent. Moreover its asymptotic variance improves with the level of interference. Experimentally,
we show how the performance of several baseline ITE estimators improve when plugged in the MITE
meta-estimator. We also observe the relationship between performance and interference as predicted
by our theoretical results.
Finally, this work opens several perspectives among which: i) stability of our results under variations
of assumptions, ii) bound tightness and properties in high-dimensional contexts, and iii) explo-
ration of how representation learning approaches may uncover by themselves MITE-like estimator
decomposition under weaker causal assumptions.
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A PROOFS

A.1 PROPOSITION 1

We remind that we define the structural causal model C = (S,PN), which is henceforth assumed to

represent the causal mechanisms underlying the variables of interest in our work.

S is defined in Equations (1):

T = ÑT

U = NU

X = fX(U,NX)

M = fM (X,NM )⇥ T

Y = fY (X,M,U,NY ).

(1)

PN satisfies the following mild conditions: NU , NX , NM , NY are noise consistent with variables

definitions, and ÑT is distributed according to a Bernoulli distribution with parameter p = PC(T ),
consistent with a randomized controlled experiment setting.

The associated causal graph GC is given in Figure 1

T M Y

X U

Figure 1: Causal graph GC induced by the SCM C
In the next proposition, we list four assumptions implied by the C about the variables of interest.

Proposition 1 The SCM C defined in Equations 1 implies the following assumptions on variables T ,
M , Y and X:

(Randomized treatment) T ?? X

(Exclusive mediation) T ?? Y | {X,M}
(Strong mediation monotonicity) T = 0)M = 0

(Valid covariate adjustment) {X} is a VAS for (M,Y )

(2)

Proof.
The proof of Proposition 1 relies on valid adjustment set, the back-door criterion and the definition of

d-separation and the Markov property defined in (Pearl, 2009; Peters et al., 2017). First of all our

SCM is Markovian (Proposition 6.31 of Peters et al. (2017)) because we assume that the distributions

are induced by the causal graph.

Randomized treatment, is implies by the Markov property (Proposition 6.21 of Peters et al. (2017)),

i.e. d-separation (Definition 6.1 of Peters et al. (2017)) implies independence. Indeed T and X are

d-separated by the empty set (all paths between T and X have either!M  or! Y  which are

blocked by not including neither M nor Y )

Exclusive mediation is also implied by the Markov property and a d-separation. It corresponds to the

d-separation of T and Y by the set {X,M}. This d-separation is shown by listing all paths between

T and Y and observing that they are all blocked by the set {X,M}.

Strong mediation monotonicity is straightforwardly implied by the structural assignment of M given

in Equations (1).

Valid covariate adjustment assumption relies on the back-door criterion for valid adjustment set

(Proposition 6.41 and definition 6.38 of Peters et al. (2017)). X satisfies the condition because it is

not a descendant of M and it blocks all paths from M to Y that enter Y through the backdoor.

⌅
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A.2 LEMMA 1

The proposed method exploits the mediation variable M , i.e. the treatment acceptation, by splitting

the treatment to outcome path into a product of two subpaths, both with a higher noise-to-signal ratio.

In particular, based on the causal graphical model 1, we can integrate M into the PC;do(T )(Y |x) as

presented in the next Lemma.

Lemma 1 Assuming C, and for any x 2 X , the positive outcome probability under treatment,
PC;do(T )(Y |x), can be written as follows:

PC;do(T )(Y |x) = PC(Y |x,M) + PC(M |x, T )
⇣
PC(Y |x,M)� PC(Y |x,M)

⌘
. (3)

Proof.
Assuming the SCM C truly describes the relationships between T,X,M, Y , we have:

PC;do(T )(Y |x) = PC;do(T )(Y,M |x) + PC;do(T )(Y,M |x)
= PC;do(T )(Y |x,M)| {z }

PC(Y |x,M)

PC;do(T )(M |x) + PC;do(T )(Y |x,M)| {z }
PC(Y |x,M)

PC;do(T )(M |x)

= PC(Y |x,M)PC;do(T )(M |x) + PC(Y |x,M)PC;do(T )(M |x)
= PC(Y |x,M)PC;do(T )(M |x) + PC(Y |x,M)PC;do(T )(M |x)| {z }

1�PC;do(T )(M |x)

= PC(M |x, T )
⇣
PC(Y |x,M)� PC(Y |x,M)

⌘
+ PC(Y |x,M),

where we used assumptions described Equations (2), that imply: PC;do(T )(·|x, ·) = PC(·|x, T, ·)
(Randomized treatment), PC(Y |x, T,M) = PC(Y |x,M) (Mediator full effect channelling),

and the claim follows. ⌅

A.3 PROPOSITION 2

For all x 2 X , we define the individual treatment effect ⌧ ITE(x), treatment effect if treated ⌧ ITET (x),
as well as the individual non-interference �(x) probability (that we henceforth refer to as individual
compliance for clarity) as follows:

⌧ ITE(x) = PC;do(T )(Y |x)� PC;do(T )(Y |x),

⌧ ITET (x) = PC;do(M)(Y |x)� PC;do(M)(Y |x),
�(x) = PC;do(T )(M |x).

(4)

We also define the relative ITET �(x) and relative ITE ↵(x) as:

↵(x) =
PC(Y |T, x)� PC(Y |T , x)

PC(Y |T , x)

�(x) =
PC(Y |M,x)� PC(Y |M,x)

PC(Y |M,x)
.

(5)

In Proposition 2, we present a result linking the ITE, the ITET and the interference/compliance

probability:

Proposition 2 Assuming C, the ITE decomposes as follows:

⌧ ITE(x) = ⌧ ITET (x)�(x) (6)

Proof
We have an analogous version of Equation (3) for the term PC;do(T )(Y |x):

PC;do(T )(Y |x) = PC(Y |x,M) + PC(M |x, T )
⇣
PC(Y |x,M)� PC(Y |x,M)

⌘
.

2



Since T )M (Mediator strong monotonicity assumption), we get that, 8x 2 X , PC(M |x, T ) = 0,

and finally:

PC;do(T )(Y |x) = PC(Y |x,M).

Then:

⌧ ITE(x) = PC;do(T )(Y |x)� PC;do(T )(Y |x)

= PC(M |x, T )
⇣
PC(Y |x,M)� PC(Y |x,M)

⌘

+ PC(Y |x,M)� PC(Y |x, T )| {z }
PC(Y |x,M)

= PC(M |x, T )
⇣
PC(Y |x,M)� PC(Y |x,M)

⌘
.

which completes the proof.

⌅

A.4 PROPOSITION 3

Single-stratum setting. We focus on the ITE estimation for a single value x0 of X , for which we

assume to observe n i.i.d. samples {(x0, Ti,Mi, Yi)}1in. In practice, this generalises to any

stratum S ⇢ X containing x0 of X for which the adjustment set formula is valid, i.e. if the variable

X 0 , x0IX2S +XIX 6=x0 defines a valid adjustment set for (M,Y ).

Notations. Consistently with notations presented in Equations (4) and (5), ↵(x0),�(x0) refer

respectively to the relative ITE and relative ITET in stratum {X = x0} (and are assumed to be

positive in this illustrative setting), and we denote ⌧̂ ITE(x0), ⌧̂ ITET (x0), �̂(x0) the respective

maximum-likelihood estimators (MLE) of ⌧ ITE(x0), ⌧ ITET (x0), �(x0). We define the associated

MITE estimator as ⌧̂MITE(x0) , �̂(x0)⌧̂ ITET (x0). Lastly, we denote p1(x0) = PC(Y |T, x0).
In the following Proposition, we present an asymptotic bound for the ratio of the standard deviation

sd of MITE and ITE estimators.

Proposition 3 Under C defined in Equations (1) with PC(T ) = 1
2 , and assuming we observe n i.i.d.

samples in stratum {X = x0}, we have:

lim
n!1

sd(⌧̂MITE)

sd(⌧̂ ITE)


s✓
2(1 + �)

(1� p1)(1 + ↵)

◆
� (7)

where we dropped references to x0 for clarity.

Proof.
The proof is splitted in four steps:

1. Maximum-Likelihood and treatment effect estimators

2. Variance of estimators derivation

3. Variance upper and lower bounds

4. Wrap up

Every random quantity is henceforth implicitly considered to be ‘with respect to x0’.

1. MAXIMUM-LIKELIHOOD AND TREATMENT EFFECT ESTIMATORS

We remind that we have n i.i.d. samples {(Ti,Mi, Yi)}1in of variables (T,M, Y ), and that we

suppose PC(T ) = 1
2 .

3



We define the following compact notations:

p0 = PC(Y |T )
p1 = PC(Y |T )
q0 = PC(Y |M)

q1 = PC(Y |M)

t = PC(T )

� = PC(M |T ).

Associated maximum-likelihood estimators (MLE) p̂0, p̂1, q̂0, q̂1, t̂ and �̂ are given by (ratios of)

empirical frequencies. For instance,

t̂ =
1

n

nX

i=1

Ti

�̂ =

1
n

nP
i=1

Mi

1
n

nP
i=1

Ti

=
1

nP
i=1

Ti

nX

i=1

Mi

p̂0 =

1
n

nP
i=1

(1� Ti)Yi

1
n

nP
i=1

(1� Ti)
=

1
nP

i=1
(1� Ti)

nX

i=1

(1� Ti)Yi

p̂1 =

1
n

nP
i=1

TiYi

1
n

nP
i=1

Ti

=
1

nP
i=1

Ti

nX

i=1

TiYi

q̂0 =

1
n

nP
i=1

(1�Mi)Yi

1
n

nP
i=1

(1�Mi)
=

1
nP

i=1
(1�Mi)

nX

i=1

(1�Mi)Yi

q̂1 =

1
n

nP
i=1

MiYi

1
n

nP
i=1

Mi

=
1

nP
i=1

Mi

nX

i=1

MiYi

(8)

Where by convention we consider that
0
0 = 0.

Direct estimators for ⌧ ITE
, ⌧ ITET

are given by applying the two-model approach to MLEs given in

Equations (8), i.e.

⌧̂ ITE = p̂1 � p̂0

⌧̂ ITET = q̂1 � q̂0

and the corresponding ⌧MITE
estimator therefore writes:

⌧̂MITE = (q̂1 � q̂0)�̂.

In what follows, we will now write
P

i instead of

nP
i=1

when there is no ambiguity.

2. VARIANCE OF ESTIMATORS DERIVATION

2.A. ⌧̂ ITE VARIANCE DERIVATION

4



For any random variables X,Y , we have that

V ar(X) = V ar(E[X|Y ]) + E[V ar(X|Y )]. (9)

Using this formula with X = ⌧̂ ITE = p̂1�p̂0 and Y = {T1, . . . , Tn} (denoted {Tk}k for simplicity),

we may write:

V ar(⌧̂ ITE) = E
⇥
V ar(⌧̂ ITE |{Tk}k)

⇤
+ V ar

⇥
E(⌧̂ ITE |{Tk}k)

⇤
. (10)

First term of Equation (10)

The term V ar(⌧̂ ITE |{Tk}k) decomposes as:

V ar(⌧̂ ITE |{Tk}k) = V ar(p̂1 � p̂0|{Tk}k)
= V ar(p̂1|{Tk}k) + V ar(p̂0|{Tk}k)� 2Cov(p̂1, p̂0|{Tk}k).

Now let’s handle each one of those three terms, starting with the last one:

Cov (p̂1, p̂0|{Tk}k) = Cov

0

@ 1P
i Ti

X

i

TiYi,
1P

j(1� Tj)

X

j

(1� Tj)Yj |{Tk}k

1

A

=
1P
i Ti

1P
j(1� Tj)

Cov

0

@
X

i

TiYi,
X

j

(1� Tj)Yj |{Tk}k

1

A

=
1P
i Ti

1P
j(1� Tj)

X

i

X

j

(1� Tj)Ti Cov (Yi, Yj |{Tk}k)| {z }
6=0 only if i=j (since i.i.d.)

=
1P
i Ti

1P
j(1� Tj)

X

i

(1� Ti)TiCov(Yi, Yi| {Tk}k| {z }
Ti (since i.i.d.)

)

=
1P
i Ti

1P
j(1� Tj)

X

i

(1� Ti)Ti| {z }
=0

V ar(Yi|Ti)

= 0.

Then the first one:

V ar(p̂1|{Tk}k) = V ar

 
1P
i Ti

X

i

TiYi|{Tk}k

!

=

✓
1P
i Ti

◆2

V ar

 
X

i

TiYi|{Tk}k

!

=

✓
1P
i Ti

◆2X

i

V ar(TiYi| {Tk}k| {z }
Ti (since i.i.d.)

)

=

✓
1P
i Ti

◆2X

i

TiV ar(Yi|Ti)| {z }
V ar(Y |T=1)Ti (since i.i.d.)

=

✓
1P
i Ti

◆2

V ar(Y |T = 1)
X

i

Ti

=
1P
i Ti

V ar(Y |T = 1)

=
1P
i Ti

p1(1� p1).

Analogously, we get for the second term:

V ar(p̂0|{Tk}k) =
1P

i(1� Ti)
p0(1� p0).
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Therefore, we get

V ar(⌧̂ ITE |{Tk}k) =
1P
i Ti

p1(1� p1) +
1P

i(1� Ti)
p0(1� p0). (11)

Finally, the first term on the right side of Equation (10) can be written as:

E
⇥
V ar(⌧̂ ITE |{Tk}k)

⇤
= E


1P
i Ti

�
p1(1� p1) + E


1P

i(1� Ti)

�
p0(1� p0). (12)

Second term of Equation (10)

We may write

E(⌧̂ ITE |{Tk}k) = E(p̂1|{Tk}k)� E(p̂0|{Tk}k).
Moreover,

E(p̂1|{Tk}k) = E
 

1P
i Ti

X

i

TiYi|{Tk}k

!

=
1P
i Ti

X

i

E (TiYi|{Tk}k)

=
1P
i Ti

X

i

Ti E(Yi|Ti)| {z }
p1

=
1P
i Ti

 
X

i

Ti

!
p1

= p1.

Analogously we get

E(p̂0|{Tk}k) = p0.

Therefore E(⌧̂ ITE |{Tk}k) is a constant relatively to the {Tk}s, and

V ar
⇥
E(⌧̂ ITE |{Tk}k)

⇤
= 0. (13)

Wrap up of the variance of ⌧̂ ITE

Combining Equations (10), (12) and (13) we finally get:

V ar(⌧̂ ITE) = E


1P
i Ti

�
p1(1� p1) + E


1P

i(1� Ti)

�
p0(1� p0). (14)

2.B. ⌧̂MITE VARIANCE DERIVATION

Using Equation (9) with X = ⌧̂MITE = �̂(q̂1 � q̂0) and Y = {T1, . . . , Tn,M1, . . . ,Mn} (denoted

{Tk,Mk}k for simplicity), we may write:

V ar(⌧̂MITE) = E
⇥
V ar(⌧̂MITE |{Tk,Mk}k)

⇤
+ V ar

⇥
E(⌧̂MITE |{Tk,Mk}k)

⇤
. (15)

First term of Equation (15)

Using the fact that ⌧̂MITE = �̂(q̂1 � q̂0), and remarking that E[�̂|{Tk,Mk}k] = �̂, we may write:

V ar(�̂(q̂1 � q̂0)|{Tk,Mk}k) = �̂2V ar((q̂1 � q̂0)|{Tk,Mk}k)
By analogy with Equation (11), we have

V ar(q̂1 � q̂0)|{Tk,Mk}k) =
1P
i Mi

q1(1� q1) +
1P

i(1�Mi)
q0(1� q0),

which gives

V ar(�̂(q̂1 � q̂0)|{Tk,Mk}k) = �̂2(
1P
i Mi

q1(1� q1) +
1P

i(1�Mi)
q0(1� q0)). (16)
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Replacing �̂ =
P

i MiP
i Ti

=
P

i MiTiP
i Ti

in (16), we get:

V ar(�̂(q̂1 � q̂0)|{Tk,Mk}k) =
P

i Mi

(
P

i Ti)
2 q1(1� q1) +

(
P

i Mi)
2

(
P

i Ti)
2P

i(1�Mi)
q0(1� q0).

The first term of Equation (15) then writes:

E
⇥
V ar(⌧̂MITE |{Tk,Mk}k)

⇤
= E

" P
i Mi

(
P

i Ti)
2

#
q1(1�q1)+E

"
(
P

i Mi)
2

(
P

i Ti)
2P

i(1�Mi)

#
q0(1�q0).

(17)

Second term of Equation (15)

First, we have

E(⌧̂MITE |{Tk,Mk}k) = E(�̂(q̂1 � q̂0)|{Tk,Mk}k)
= �̂E(q̂1 � q̂0|{Tk,Mk}k)
= �̂ (E(q̂1|{Tk,Mk}k)� E(q̂0|{Tk,Mk}k)) .

Then a few computations lead to

E(q̂1|{Tk,Mk}k) = E
 

1P
i Mi

X

i

MiYi|{Tk,Mk}k

!

=
1P
i Mi

E
 
X

i

MiYi|{Tk,Mk}k

!

=
1P
i Mi

X

i

MiE (Yi|{Tk,Mk}k)

=
1P
i Mi

X

i

MiE (Yi|Ti,Mi)| {z }
MiE[Y |M=1]

= E[Y |M = 1]| {z }
q1

1P
i Mi

X

i

Mi

= q1

We can use analogous computations to get

E(q̂0|{Tk,Mk}k) = q0.

Regrouping these results we have

E(⌧̂MITE |{Tk,Mk}k) = �̂(q1 � q0),

which gives the following expression for the second term of (15)

V ar
�
E(⌧̂MITE |{Tk,Mk}k)

�
= (q1 � q0)

2V ar(�̂).

Using the fact that V ar(�̂) = E(V ar(�̂|{Tk}))+V ar(E[�̂|{Tk}]), we can proceed similarly to step

1 to get

V ar(�̂) = E
✓

1P
i Ti

◆
�(1� �).

This gives the final expression for the second term of (15):

V ar
�
E(⌧̂MITE |{Tk,Mk}k)

�
= (q1 � q0)

2E
✓

1P
i Ti

◆
�(1� �). (18)

Wrap up of the variance of ⌧̂MITE

Combining Equations (15), (17) and (18), we have:

V ar(⌧̂MITE) = E
" P

i Mi

(
P

i Ti)
2

#
q1(1�q1)+E

"
(
P

i Mi)
2

(
P

i Ti)
2P

i(1�Mi)

#
q0(1�q0)+(q1�q0)2E

✓
1P
i Ti

◆
�(1��).

(19)
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3. ASYMPTOTIC VARIANCE UPPER AND LOWER BOUNDS

3.A ASYMPTOTIC LOWER BOUND OF V ar(⌧̂ ITE) With a slight rewriting of (14),

nV ar(⌧̂ ITE) = E


1
1
n

P
i Ti

�
p1(1� p1) + E


1

1
n

P
i(1� Ti)

�
p0(1� p0).

Using the law of large numbers , we get

lim
n!1

nV ar(⌧̂ ITE) = 2 (p1(1� p1) + p0(1� p0)) . (20)

Where we remind we have supposed t = PC(T ) = 1
2 for simplicity.

Now, using p1 = (1 + ↵)p0, and with the assumption ↵ � 0, we have:

lim
n!1

nV ar(⌧̂ ITE) = 2p0 (1� p0 + (1 + ↵)(1� p1))

� 2p0 (1� p1 + (1 + ↵)(1� p1))

= 2p0(1� p1)(2 + ↵).

In summary, we have the following asymptotic lower bound for V ar(⌧̂ ITE):

lim
n!1

nV ar(⌧̂ ITE) � 2p0(1� p1)(2 + ↵). (21)

3.A ASYMPTOTIC UPPER BOUND OF V ar(⌧̂MITE)
With a slight rewriting of (19),

nV ar(⌧̂MITE) = E
"

1
n

P
i Mi

�
1
n

P
i Ti

�2

#
q1(1� q1) + E

" �
1
n

P
i Mi

�2
�
1
n

P
i Ti

�2 1
n

P
i(1�Mi)

#
q0(1� q0)

+ (q1 � q0)
2E
✓

1
1
n

P
i Ti

◆
�(1� �). (22)

Using the law of large numbers , we get

lim
n!1

nV ar(⌧̂MITE) = 2�q1(1� q1) + 2
�2

2� �
q0(1� q0) + 2�(1� �)(q1 � q0)

2. (23)

Now, using that for any q 2 [0, 1], q(1 � q)  q, and reminding that q1 = (1 + �)q0  1 where

� � 0 by assumption, we get:

lim
n!1

nV ar(⌧̂MITE) = 2�q1(1� q1) + 2
�2

2� �
q0(1� q0) + 2�(1� �)(q1 � q0)

 2�

0

BBB@
q1|{z}
�q0

+
�

2� �| {z }
�1

q0 + (q0(1 + �))2| {z }
q0�

1

CCCA

 2�q0 (1 + � + 1 + �)

= 4q0�(1 + �).

In summary, we have the following asymptotic upper bound for V ar(⌧̂MITE):

lim
n!1

nV ar(⌧̂MITE)  4q0�(1 + �). (24)

4. WRAP UP
Combining Equations (21) and (24) (ratio of positive values), we get

lim
n!1

nV ar(⌧̂MITE)

lim
n!1

nV ar(⌧̂ ITE)
 4q0�(1 + �)

2p0(1� p1)(2 + ↵)

= 2
1 + �

(1� p1)(2 + ↵)
�.
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Where we remind that Strong mediation monotonicity and Exclusive mediation imply straightfor-

wardly that p0 = q0 (as shown in the beginning of the proof of Proposition 2). Since the limits of

both the numerator and denominator exist, this implies that

lim
n!1

V ar(⌧̂MITE)

V ar(⌧̂ ITE)
 2

1 + �

(1� p1)(2 + ↵)
�.

Taking the square root of this equation gives the wanted result.

⌅
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