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ABSTRACT

We consider the task of optimizing treatment assignment based on predictions of
the individual treatment effect (/7' E), as found in applications such as personal-
ized medicine or targeted advertising. We argue that traditional approaches do not
provide rigorous guarantees for model selection, jeopardising expected gains of
targeting treatment. For the first time we overcome this problem by maximizing
directly future expected gains. Our proposal entails a ranking formulation of the
Area Under the Uplift Curve (AU U C) for which we provide derivable surrogates
and data-dependent generalization bounds based on local Rademacher complexity.
Through careful experimental evaluation on real datasets we empirically demon-
strate the tightness of our bounds and show their effectiveness for model selection.

1 INTRODUCTION

In many applications there is a need to target actions to specific portions of a population so as to
maximize a global utility. For instance in personalized medicine one is interested in prescribing
a treatment only to patients for whom it would be beneficial. Similarly in performance marketing
one would prefer to target advertisement budget towards potential customers that would be more
likely to be persuadable to purchase. We formalize this setting as a problem of optimizing treatment
assignment and illustrate it in Figure|l} We focus on the case where data are available from prior
experiments: it could be a pilot study using a randomized control trial with placebo for medicine
or an A/B test for marketing (step 1). Such experiments are usually used to estimate the Average
Treatment Effect (AT E) of treatment 7" on outcome Y: ATE = E[Y|T = 1]-E[Y|T = 0]. More-
over it is possible to learn an Individual Treatment Effect (ITE) predictor ITE(z) = E[Y|X =
z,T=1]—E[Y|X = x, T = 0] when covariates X are observed (Radcliffe| (2007); |Jaskowski
& Jaroszewicz|(2012) (step 2). Such models are also known as uplift models in marketing literature
and especially useful when treatment effect is heterogeneous. Practitioners use the predicted ITE
to rank future instances and target treatment to the ones with the highest scores (step 3) (Devriendt
et al.| (2018)).

Step 2: Individual Treatment Effect Model
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Figure 1: The task of optimizing treatment assignment. Step 1 starts with a randomized control
trial allowing to estimate AT E. Then Step 2 consists in learning and evaluating several IT'F models
and selecting the best performing one by AUUC on data gathered at Step 1. Finally at Step 3, the
best model is used to target treatment on the next cohort of individuals. Our main contribution is to
provide guarantees for selecting the best I7T'E model.

Model selection is a crucial step in the process as the quality of the model will be strongly influencing
the gain of targeting treatment. Indeed, when a new cohort of individuals is available, the predictions
of the model will be used to target treatment: highest scored individuals would get treatment (green
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individuals in Figure [I) whilst the lowest scored ones would be excluded from treatment (blue
individuals). The metric of choice to value the quality of a model is the Area Under the Uplift
Curve (AUUC) (Rzepakowski & Jaroszewicz| (2010). This metric measures the cumulative uplift
along individuals sorted by predicted /7' E. A good model (with a high AUUC) scores higher those
individuals for which the IT'E is strong compared to ones for which the IT'E is low.

We highlight a discrepancy between the documented practice of model selection by AUUC and the
generalization guarantees of traditional /7' E models. Indeed, I'T"E models (as reviewed in (Gutier-
rez & Gérardy|(2017))) optimize proxies of the AUUC, typically an outcome prediction accuracy.
Now the Empirical Risk Minimization (ERM) principle provides generalization guarantees for the
performance of models on unseen data but only for the loss that is optimized, which is a proxy and
not AUUC itself. Hence there is a risk that selecting models by AUUC, whereas they optimize
another loss, might lead to weak or negative gains when targeting treatments on future instances of
the problem. Moreover, practitioners typically select models or hyperparameters by cross-validation
(Devriendt et al.[(2018))), leading to costly procedure where models need to be learned and evaluated
many times.

Considering the possible errors in model selection and inefficiencies of traditional I7"E model for-
mulations our proposition is to study generalization bounds for AUUC, from which we derive a
learning objective that can be safely and efficiently used for model selection. Our main contribu-
tions are summarized as follows.

1. We propose the first generalization bounds for AUUC using data-dependent concentration
inequalities on dependent variables (Section [3).

2. We propose the first IT'E model guaranteed to generalize for treatment optimization by
deriving a surrogate of the ranking formulation of AUUC (Section[4).

3. We perform a thorough empirical evaluation (Section [5) covering: 1) tightness of differ-
ent variants of the bounds, ii) its usefulness for model selection, iii) choice of different
surrogates of the AUUC loss, iv) performance on real datasets.

2 RELATED WORKS

In this section we will review existing IT E prediction approaches, evaluation metrics, and pitfalls
of I'TE prediction.

2.1 EVALUATION METRICS

At first glance one could question the usage of specific metrics for evaluation I'7'E models. After all,
if we could observe the outcome of a given individual in both the treated and untreated case we could
use a conventional metric such as mean squared error (M S E). Such a metric is formalized in (Shalit
et al.[(2017)) as a point-wise Precision when Estimating Heterogeneous Effect (PEHFE): eppng =
jx(ﬁ(x) — u(x))?p(x)dx. In practice it has undesirable properties: i) x could be arbitrarily sparse,
leading to estimating conditional expectations on very few data points or even ii) impossible if a
given z is observed only in one of the control or treatment conditions.

At the same time one can estimate group-level treatment effect as ATE over the group of individ-
uals. This idea underlies the Area Under the Uplift Curve (AUUC') (Rzepakowski & Jaroszewicz
(2010)), which is popular method for evaluating /T models in the literature. This metric is an
extension of the Area Under the Lift Curve (AU L) (Tufféry| (2011))). Each point on uplift curve
corresponding to IT'E model p is the difference in mean outcome rate (or lift) produced by model
p of groups T (treatment, 7' = 1) and C' (control, 7' = 0), at a particular threshold percentage of
all examples. Such a curve is shown in Figure E} (Kuusisto et al.|(2014)) have defined AUUC as a
difference of AU Ls for treatment and control groups.

In this work we normalize AUUC as in (Surry & Radcliffe (201 1) namely i) we subtract AUUC
of the random model and ii) we divide resulting area by area between AUUC' of the ideal model

'authors call it ”Qini coefficient” by analogy to Gini coefficient
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and of the random model, giving the following formula:

AUUC(p) = QETAU€T(P) —yr - %ZjCAUI:C(p) +9c 0
yr(1 —g7) +yc(1 - 9c)
where g7, jc are average outcome rates of groups 7" and C' respectively. Subtraction of AUUC
of the random model allows to disentangle what is the gain of using I7T'E model p compared to a
random model. Also dividing by ideal model performance makes AUUC scores more comparable
between datasets.

2.2 ITE PREDICTION METHODS

The Two Models (TM) approach (Hansotia & Rukstales|(2002)) is probably the most trivial method
to predict ITE. It uses two separate probabilistic models, Pr(Y = 1|X) for group T and P (Y =
11X) for group C. ITE then can be computed as:

P (z) = Pr(Y =1|X =2) — Po(Y = 1|X = z) (2)
For this method, any prediction model with its outputs interpreted as probabilities can be used (typ-
ically logistic regression). We notice that when the average response is low and/or noisy there is the
risk for the difference of predictions to be very noisy too and lead to arbitrary ranking of individuals

overall (see (Radcliffe & Surry|(2011))) for a detailed critic). This remark makes a general argument
for using methods that combine knowledge of both parts of the dataset.

In an attempt to overcome this problem, (Betlei et al.| (2018))) proposed the approach Shared Data
Representation (SDR) and showed that a multi-task approach empirically performs well when the
treatment is imbalanced. Another attempt in this direction by the same authors is Dependent Data
Representation (DDR) which can be seen as a classifier cascade transferring knowledge from one
treatment group to another.

(Jaskowski & Jaroszewicz|(2012)) proposed the Class Variable Transformation (CVT) technique
that combines binary treatment and outcome in order to use a single classification model. For this
purpose a new label :

Z=YT+(1-T)1-Y), 3)
is defined which gives a predictor of the form
PV (@) =2P(Z=1X =) - L @)

Another productive line of research has been the adaptation of split criteria of Decision Trees
(Radcliffe & Surry| (2011); Rzepakowski & Jaroszewicz| (2012); [Sottys Michatand Jaroszewicz &
Rzepakowski| (2015)) for I'T E prediction.

2.3 METRIC MAXIMIZATION AND GENERALIZATION BOUNDS

Overall, even though the common methods described in previous section were shown to empirically
perform well, they still miss optimization towards the optimal ordering. We now focus on two
previous works that are more directly related to maximizing ranking performance metrics for I'TE
and that provide some generalization guarantees.

SVM for Differential Prediction (Kuusisto et al.|(2014)) is probably the most similar work to our
approach. Essentially authors propose to maximize AUUC' directly by expressing it as a weighted
sum of two Areas Under ROC Curve (AU C) and maximizing it using a suitable Support Vector
Machine (SVM) objective. We build upon their seminal work by deriving a generalization bound
for AUUC with a similar AUUC decomposition. Moreover we explain how to optimize differen-
tiable surrogates of the bound for a very large class of models including deep neural nets. We also
experiment on much larger, real-world datasets than in the original study.

Another related work that proposes generalization bounds is (Shalit et al.[(2017))). At a detailed level
their study is sensibly different in that i) it tackles the observational case (and assumes no unobserved
confounders) and ii) bounds PEH E (an M SE on the individual treatment effect - see Section [2.T))
which is quite different to AUUC, that is by essence a ranking metric. Another difference is that we
propose data-dependent bounds that take into account the specifics of evaluation datasets and might
thus be more informative about the difficulty of the practical problem (see also Section .2 where
we explain how to use our generalization bound for model selection).
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3 ANALYZES AND GENERALIZATION BOUNDS

Opverall, our plan is to bound the difference between AUUC and its expectation and use it to pro-
pose corresponding learning objective. For that purpose we start by drawing a connection between
AUUC and AUC' (Section and by means of Rademacher concentration inequalities (Section
[3.3) build a bound. Then we explain how to estimate it in practice (Section [3.4). Finally we define
a principled optimization method with generalization guarantees for AUUC' (Section ).

3.1 CONNECTION BETWEEN AUUC AND AUC

Before beginning our analyzes, we suppose that labels in the group C are replaced by (1-7")(1-Y)
as in (Eq. (this will avoid a minimax optimization later). Let ST denote the subset of the training
set S related to observations having been given a treatment and S¢ denote the control group with
the reverted labels. i.e. S = S7 11.SC. Let also 71, §ic be the average outcome rates of groups 7'
and C (with changed labels) respectively. Furthermore, let A\r = §r(1 — §r), \c = (1 — Jo)
be the variance of outcome as a Bernoulli random variable in treatment and reverted label control
respectively.

Proposition 1 AUUC is related to ranking loss (Eq. [6)) as:

AUUC(f,87,8°) =1 — (aR(f,ST) + BR(f,S°)), (5)
where
R(f,89) & ﬁ > Y Li<so) (6)
T (xi+1)€S89 (x5,0)€59
is the empirical bipartite ranking risk, g € {T,C}, a = )\sz‘_ﬁc B = /\TQi‘f\c.

The proof is based on the derivation of the expression of AUL(f, S9) from AUC(f, S9) (Tufféry
(2011)); and the equality AUC(f,S9) =1 — R(f,S9).

3.2 LEARNING OBJECTIVE

Let F = {f : X — R} be the set of real-valued functions, we suppose that observations of
the groups 7" and C are identically and independently distributed according to some distribution
D9; g € {T, C}. From (Eq. , the learning objective is hence to find f € F in such a way that

AUUC(f) = Esr se [AUUC(f, 87, 5)] =1 = (aBsr[R(f,$T)] + BEse [R(f, 5)]) ()
is as large as possible. From this expression, the problem then casts into controlling

Pt wonpe (f(x) < f(X)), ®)

in both groups g € {T',C'}; DY, (resp. DY) is the conditional distribution of the preferred or positive

(resp. non-preferred or negative) examples of the group S9.

3.3 RADEMACHER GENERALIZATION BOUNDS

Let us now consider the minimization problems of the pairwise ranking losses over the treatment
and the control subsets, and the following dyadic transformation defined over each of the groups S™
and S¢

T(S9) = <{ (z; ‘ ( (Xz?)» P(xir)), ﬂj:‘k%) ify, =4+1landy; =0 ) C)
’ ’ j=@'-1)n? 44

#(x;)), y; =—1) -elsewhere

where g € {T,C}; ¢(x) € RP is the feature representation associated to observation x, and n?.
(resp. n9) is the number of negative (resp. positive) observations in S and [J] = {1,...,J}
denotes the set of first J integers. With the class of functions

H={h:R xR - R;(s(x"),6(x")) = f(o(x¥)) — f(6(x¥)), f € F},  (10)
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the empirical loss (Eq.[6) can be rewritten as :

N
1
L(T(9),h) = % > 15,h(a)<o- (11)
j=1

We now state our main result which is a lower bound of the AUUC, stated in Theorem I}

Theorem 1 Let S = (x;,y;), € (X x V)™ be a dataset of m examples drawn i.i.d. according to
a probability distribution D over X x Y, and decomposable according to treatment ST and changed
label control S¢ subsets. Let T(ST) and T (SC) be the corresponding transformed set. Then for
any 1 > § > 0and 0/1 loss £ : {—1,+1} x R — [0, 1], with probability at least (1 — §) the
Sfollowing lower bound holds for all f € F, :

AUC() 2 1= (aRa(f.57) + BRA1,5°) |- Es(Oha(F). Re(F2)) 20 (5 + L ) 0w 5

T complexity term
empirical term data term

5 5. /3 5 Y+ 3/ar
(7). o (7)) = (aRe(F) 3537+ (DT YT oy VAT ) fog
ny ny
is defined with respect to local Rademacher complexities of the class of functions F estimated over
the treatement and the control sets.

The proof is based on the generalization upper bounds of the ranking losses, Rz( f,ST) and

RZ( f,8%), proposed in (Ralaivola & Amini| (2015)). The result is then deduced from the union
bound after finding the optimal constants that appear in the infimums of these generalization bounds.

Note that the convergence rate of the bound is governed by the positive classes in both treatment and
control subsets which in general is the least represented class. To the best of our knowledge this is
the first data-dependent generalization bound proposed for AUUC'.

3.4 COMPUTATION OF THE BOUND FOR Rg(F;)

As one can see, our lower bound for AUUC consists of three main terms, namely empirical, com-
plexity and data terms. To use it in practice we first need to clarify how to estimate local fractional
Rademacher complexities R7(F,.) and R (F,) that appear in €5(Rr(F,), Re(Fr)). A solution
is to upper bound R g (F,) by a term that includes its empirical counterpart. This allows to directly
estimate a lower bound for AUUC from training data.

Proposition 2 Ler S C {z : ||x|| < R} be a sample of size N with n™ positive labels and let
Fr={x—w-x:||w| <A f € F:Vf <r}, be the class of linear functions with bounded
variance and bounded norm over the weights. Then, the local fractional empirical Rademacher
complexity of F,. can be bounded with probability 1 — % by:

2
R2A2 log 5

<
mS (]:7’) - TL+ 27'L+

(12)

4 PROPOSED APPROACH

We propose to extend the class variable transformation approach due to its convenient properties.
Firstly, under reverting label in control group we manage to avoid a minimax optimization problem
of maximizing weighted difference of AUC(f, S”) and AUC(f, S¢) (see proof of Proposition
for details) and use instead Expression[5] Secondly, according to (Eq. f), ranking of data points by
their I'T F score is equivalent to ranking them by probability predictions of the model.

4.1 AUUC MAXIMIZATION

We formulate an optimization problem for the empirical value of AUUC' as follows:

argmax AUUC = arg min (aR(fe, STy + ﬁR(fg, SC)) , (13)
0 0
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Both terms R(fp, ST) and R(fy,SC) in equation |13 are non-differentiable functions as they are
defined over the instantaneous ranking loss 1. <f(x,)- However we can use differentiable

surrogates of the latter (Yan et al.| (2003)), such as sjoq (x;,%;) = In (1 +e~®7%)) /In(2) ,
amord (56,5) = 1/ (1 ) Sy (x1,5) = (= (=% — 1)) T,
Ssigmoid (X’HXJ) / € s Spoly \Xi, Xj Xi =X — [ xi—X;<fL*

Remark that s, and sp,,, With a proper choice of hyperparameters e.g. (4 = 1,p = 3) upper
bound the indicator function.

Optimization problem equation [I3]|could be rewritten as:
arg max AUUC = arg min (a}és(fg, ST) + B}%S(fe, SC)) .5 € {Si0g, Ssigmoid, Spoly}  (14)
0 0

which is now differentiable. We called an algorithm solving optimization problem equation [I4] as
?AUUC-max”.

4.2 MODEL SELECTION USING RADEMACHER BOUND

Selecting models or hyperparameters by their lower bound, as estimated on the training set at learn-
ing time, is guaranteed to generalize to unseen data when the final metric of choice is AUUC.
Practically speaking this means one could avoid using internal cross-validation on the training set
and save large amounts of computation. We study empirically this property in Section[3]

5 EXPERIMENTAL SETUP AND RESULTS

We conducted a number of experiments aimed at evaluating how the proposed bound on the AUUC
can help to learn an efficient I7T'E model. To this end, we first present an empirical evidence on the
tightness of our bound compared to other generalization bounds proposed for ranking (Section[5.2),
as well as its usefulness in model selection processes (Section[5.3)). Finally we compare performance
of the proposed method with the other IT'E prediction approaches (Section [5.4). Technically we
implemented all methods and surrogate losses in Keras framework (Chollet et al.| (2015)). For all
models we have batch size of 1000, run 200 epochs of learning with early stopping by loss on
validation (with patience of 30 epochs) and use Adam optimizer with step decay to update the
learning rate.

5.1 BENCHMARK

Our benchmark consists of two open source, real-life datasets that happen to pertain both to the
digital marketing application. Hillstrom Email Marketing data (Hillstrom!(2008)) contains results
of an e-mail campaign for an Internet based retailer. Criteo-UPLIFT2 (Diemert Eustache, Betlei
Artem et al.| (2018)) is a large scale dataset constructed from incrementality A/B tests, a particular
protocol where a random part of the population is prevented from being targeted by advertising. For
the speed of experiments we pick a random subsample of size 1M.

5.2 TIGHTNESS OF THE PROPOSED BOUND

To assess the tightness of our bound, we depict the distribution of the differences between the true
AUUC (= E[AUUC)) and the lower bound computed on the Hillstrom dataset. For that purpose,
we learn an AUUC-max model and record the train and test AUUCSs. The true AUUC is esti-
mated from the upper bound of an Empirical Bernstein inequality (Maurer & Pontil| (2009)) on the
test sets obtained from 30,000 random train/test splits, giving a precision greater or equal than .001
(with probability > .99); this is sufficient to confidently compare it to the proposed bound estimated
on the training data coming from the splits. In Figure 2l we observe that the difference between
the estimated bound for EJAUUC] and our Rademacher bound is close to 0.1, which is quite tight
considering that AUUC' € [—1; 1]. For the sake of illustrating the tightness of this bound, we have
computed other lower-bounds using different AUC' bounds proposed in the literature. In Figure[2]
we call our bound as “rademacher” vs variants using Corollary 18 and Theorem 27 from (Agar-
wal et al|(2005)) as “agarwal” and “freund” respectively (last one is a generalization of the result
proposed in (Freund et al.|(2003))). This results suggest that the lower-bounds obtained with this
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strategy are at least 2 times looser, and illustrate the benefit of data-dependent approach as the one
we propose in this work.

5.3 USEFULNESS OF THE BOUND FOR MODEL SELECTION

To check the ability of selecting effective I'T'E’ models using the proposed Rademacher lower-bound
of (Eq. [T2), we follow the protocol of (Langford & Shawe-Taylor (2002)). According to the assump-
tions of Proposition 2] we consider the class of linear functions with bounded variance and bounded
norm on their weights, and select the hyperparameters of the model, namely L, regularization term
and the initial learning rate from the [0, 1e~°, 1le=*] and [5e~*, 1le 3] respectively (we find ranges of
such potential hyperparameters experimentally). We select the best model then by either, the usual
5-fold cross-validation (stratified by treatment variable to be able to compare metric through the
folds) on training set, or from the lower-bound of AUUC ' as estimated during training. We repeated
the procedure on 100 random train/test splits (also stratified by treatment) of Hillstrom data. Finally
we report the mean test AUUC's of both model selection techniques (AUUCE;t and AUUC!sE
respectively) on Table [T}

Table 1: Model selection: generalization bound vs 5-fold cross-validation on Hillstrom dataset.
Note how close the selection by bound is to the usual cross-validation technique.

Mean Test AUUC + 2 std

Selection by Bound  0.0657 £ 0.0248
Selection by CV 0.0665 + 0.0245

For the model selection experiments, we observe on Table|[I|that both methods perform comparably,
even though the variance of the AUUC metric is large. The mean difference takes place at the 3rd
digit, suggesting that the model selection procedure using the bound is effective. In this case, the
computation savings are of the order of number of folds used in cross-validation, usually > 5 in
practice. Remark that the bound on AUUC is directly estimated on the whole training data and
that there is no hold-out validation set as in cross-validation. For clarity, in Figure 3] we also show a
distribution of the gaps between AUUC;! and AUUCEs! - over data splits.

rademacher agarwal freund

1000

800

600

400

200

01 02 03 04 05 06 —0.002 0.000 0002 0.004 0.006 0008
E[AUUC] - Bound AUUCS - AUUCES,

Figure 2: Gap between E[AUUC| and differ- Figure 3: Model Selection: distribution of
ent versions of the bound (closer to 0 is bet- performance gaps between AUUC's of mod-
ter) on Hillstrom dataset. Note the tightness of els selected by cross-validation vs by proposed
the Rademacher version compared to (Agarwal| bound on Hillstrom dataset (negative values are
et al.| (2005)). in favour of bound method and vice versa).
Note suboptimality is < 1e~3 in most cases.

5.4 COMPARISON OF THE METHODS PERFORMANCE

For comparing the performance of the methods, we use a linear model and a multi-layer perceptron
with 2 layers and 64 units for each layer with ReLU activations as the base classifiers. As baselines,
we consider TM and CVT which are the most popular IT' E models proposed in the literature. We
keep the same range of potential regularization terms for all methods as [0, 1e=%, 1e~*]. For TM
and CVT, the ranges of initial learning rates are [le~!, 5e71] and [5e 3, 1e 2] respectively (also
found experimentally), for AUUC-max this range is the same as in Section [5.3] Also, for the
AUUC-max we evaluate s, and spo (1t = 0.1,p = 3) (according to practical suggestions of
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(Yan et al.| (2003))) as the surrogates. To check statistical significance we apply one-sided Mann-
Whitney rank test at 95% confidence level (marked in bold in the tables when positive). Tables
and [3|contain quantitative results of the approaches performance on Hillstrom and CU2-BD datasets
datasets respectively.

Table 2: Performance: comparison of AUUC-max Table 3: Performance: comparison of

vs baselines on Hillstrom dataset. Note we outper- AUUC-max vs baselines on CU2-BD.

form baselines significantly. Note we compete with the baselines by
only using model selection by bound.

| Mean Test AUUC + 2 std | Mean Test AUUC + 2 std

Base Classifier | Logistic Regression | Multi-Layer Perceptron ‘ Mean Test AUUC = 2 std
Two Models 0619 +.0273 10653 + .0239 - — -

Class Variable Transformation 0617 + .0267 10626 £ .0255 Base Classifier | Logistic Regression
AUUC-max (CV, s14) 0650 +.0249 -

AUUC-max (Bound, s1,4) 0648 +.0248 0655 +.0242 TW‘{ Models ) 0264 + 0204
AUUC-max (CV, Spory) 0665 - .0245 - Class Variable Transformation 0261 +.0182
AUUC-max (Bound, $1,) 0657 + 0248 10656 + .0249 AUUC-max (Bound, $poly) 0251 &+ .0164

As we can see on Table [] (Hillstrom) , AUUC-max with s, significantly outperform both base-
lines, even using model selection by Rademacher lower bound. One of the explanations could be that
for the AUUC-max there is a strong correlation between the loss function and the metric. Instead,
using TM and CVT one can only minimize proxy functions which sometimes cannot result in the
high AUUC'. In order to reinforce such an argument, we draw typical validation loss and AUUC
(Figure[5). Plot shows a high correlation, suggesting the loss is behaving according to theory.

Besides, as an illustration of the potential of the method to be applied to other types of models
we can observe that Multi-Layer Perceptrons (MLP) can be trained with good performance. To
reduce computation time we didn’t perform variants with cross-validation and rely on bound model
selection only. We hypothetize that the chosen architecture might limit the potential of the method
in this case as no significant results were observed.

0.0002

0.0000

T A = o . h H
006 3 oo g
00004
005 —001
002
oos ~0.0006
™ ar

AUUCmax  AUUCTmax  AUUCmax  AUUCmax 0 20 4 60 80 100 120 140 160
(k) (Bound,

—

Se)  (smp)  (Bound, spey) Epochs

Figure 4: Performance: distribution of Figure 5: Optimization: illustration of the

AUUC' on Hillstrom dataset as presented in correlation between the optimized loss and the

Table@ AUUC on a test set. Note the smoothness and
behavior over epochs.

We note that in Table [3] (CU2-BD) all models perform indistinguishably, perhaps due to the down-
sampling we chose for reducing computation time.

6 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a first data-dependent generalization lower bound for the popular ITFE
prediction metric, AUUC. We investigate tightness of the proposed bound and find that the
Rademacher version is tighter than possible alternatives. Then we come up with an efficient model
selection strategy that consists in estimating such a bound only on training set at learning time.
We empirically show that it finds models and hyperparameters as good as those found by cross-
validation. As a result we highlight its computational benefits. Further, we formulated a method to
directly maximize this metric which is usable with most machine learning models, including neu-
ral networks. Experiments on two large collections show that our method compares favorably to
relevant baselines from the literature.
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