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ABSTRACT

Decision making based on statistical association alone can be a dangerous en-
deavor due to non-causal associations. Ideally, one would rely on causal rela-
tionships that enable reasoning about the effect of interventions. Several methods
have been proposed to discover such relationships from observational and inter-
ventional data. Among them, GraN-DAG, a method that relies on the constrained
optimization of neural networks, was shown to produce state-of-the-art results
among algorithms relying purely on observational data. However, it is limited to
observational data and cannot make use of interventions. In this work, we extend
GraN-DAG to support interventional data and show that this improves its ability
to infer causal structures.

1 INTRODUCTION

Causal inference from observation is a fundamental problem in science with applications in fields
such as genomics, economics, and policy making (Koller & Friedman, 2009). The goal is to uncover
causal relationships among observed variables. Knowledge of such relationships is crucial to deci-
sion making, since it allows reasoning about the effect of interventions. That is, answering questions
such as “What would be the effect of acting to change the value of this variable?”

Several prior works have focused on learning graphical representations of causal relationships from
observational data alone (Bühlmann et al., 2014; Shimizu, 2014; Hauser & Bühlmann, 2012; Spirtes
et al., 2000). Others have shown that observing the effect of some interventions could improve the
identification of causal relationships (Eberhardt, 2008; Eberhardt et al., 2005; Yang et al., 2018).
Many of these methods are based on enumerating and scoring candidate graphs, resulting in a time-
consuming combinatorial search. Zheng et al. (2018) recently showed that this search could be
replaced by a continuous optimization problem. Building on this idea, Lachapelle et al. (2019)
proposed GraN-DAG, a method that relies on neural networks to identify causal graphs. While this
method shows state-of-the-art performance for this task, it is unable to make use of information
about interventions.

In this work, we extend the GraN-DAG method to support interventions with known targets. We start
by proposing a slightly modified loss function adapted to the interventional setting. We then evaluate
this method on real and simulated data sets. Our findings indicate that considering interventions
does improve the accuracy of GraN-DAG and that it compares favorably to state-of-the-art methods
leveraging interventional data.

2 BACKGROUND

Causal models: A causal graphical model (CGM) is defined by a distribution PX over a random
vector X = (X1, . . . , Xd) and a graph G = (V, E), where each vertex i ∈ V is associated to a
corresponding random variable Xi and each edge (i, j) ∈ E indicates a causal influence of Xi on
Xj . We use the notation XS with S ⊆ V to refer to the random vector (Xi)i∈S and xS to refer to
a specific value in the support of XS . The distribution PX of a CGM is Markovian to its graph G,
which means that the density p(x1, . . . , xd) can be factorized as

∏d
j=1 pj(xj |xπG

j
) where πGj is the

set of parents of j in graph G.
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Interventions: We consider stochastic interventions (Korb et al., 2004) to model the effect of in-
tervening on a set of variables I ⊆ V . In such interventions, the conditional density pj(xj |xπG

j
) is

replaced by a new marginal p̃j(xj) in the joint density for all j ∈ I . Formally, given the intervention
target I , the interventional joint density is defined as

p(x1, ..., xd|do(XI)) ,
∏
j /∈I

pj(xj |xπG
j
)
∏
j∈I

p̃j(xj)

This formulation encapsulates the idea that each mechanism giving rise to a variable given its parents
can be manipulated by an external agent without affecting the other mechanisms (Peters et al., 2017).

Causal learning: The causal structure learning problem consists of inferring the underlying graph
G given samples from PX . There are mainly two types of methods: score-based and constraint-
based (Heinze-Deml et al., 2018). In the score-based setting, a score S(D,G) is used to evaluate
how well the data D can be fitted using a graph G. The optimization is performed over the set of
all DAGs in order to find the graph with the highest score, Ĝ , argmaxG∈DAG S(D,G). Since the
size of this set is super-exponential in the number of nodes (Chickering, 2003), many score-based
methods rely on greedy heuristic search algorithms. Recently, Zheng et al. (2018) showed that this
combinatorial search could be replaced by a constrained continuous optimization problem, opening
the door to differentiable algorithms.

GraN-DAG: Lachapelle et al. (2019) introduced Gradient-Based Neural DAG Learning (GraN-
DAG), a score-based method that extends the continuous constrained optimization framework
of Zheng et al. (2018) to allow for nonlinear relationships. Each conditional distribution
pj(xj |x−j ;φj), where x−j denotes all variables except xj , is learned by a neural network
parametrized by φj . It receives X−j as input and outputs a parameter θj of a parametric distribution
for variable Xj . To make sure

∏d
j=1 pj(xj |x−j ;φj) is a valid joint density function, GraN-DAG

is optimized under an acyclicity constraint adapted from Zheng et al. (2018). The key idea is to
construct a weighted adjacency matrix Aφ which depends on φ , {φ1, . . . , φd}, i.e. all the weights
of all neural networks. Intuitively, (Aφ)ij ≥ 0 quantifies the strength of the edge i→ j. Moreover,
(Aφ)ij = 0 implies the edge i → j is absent (see Lachapelle et al. (2019) for more details). The
parameters of the model are learned by approximately solving the following constrained problem:

max
φ

EX∼PX
d∑
j=1

log pj(Xj |X−j ;φj) s.t. Tr eAφ = d (1)

Since the objective of (1) is a valid log-likelihood function whenever the constraint is satisfied,
its solution corresponds to the maximum likelihood estimator. In practice, this objective is opti-
mized by an augmented Lagrangian approach as in Zheng et al. (2018), where each sub-problem
is approximately solved by stochastic gradient descent. See the original paper for details regarding
thresholding and graph pruning.

3 GRAN-DAG WITH INTERVENTIONS

In its original formulation, GraN-DAG can learn the underlying causal graph given the right as-
sumptions and may thus be used to answer queries about interventions. However, it does not support
interventional data as input. Interventional data are beneficial for identifiability since they reduce
the size of the class of graphs that could have generated PX (Yang et al., 2018; Hauser & Bühlmann,
2012). Here, we extend GraN-DAG to support interventional data with known targets.

Interventional setting: The learner receives a dataset of n observations of the form
{(X(1), I(1)), ..., (X(n), I(n))}where I(i) is the interventional target associated to observationX(i).
Recall that an interventional target I is a subset of V , i.e. the nodes targeted by the intervention. The
data generation process is assumed to be the following:

I(i) ∼ P (I) i.i.d. ∀i
X(i)|I(i) ∼ P (X|I = I(i)) , p(x1, ..., xd|do(XI(i))) ∀i (2)

where P (I) is a distribution over a collection of interventional targets, denoted by I.
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Optimization problem: Conceptually, it is useful to think of the CGM we are learning as a family
of models of the form {

∏
j 6∈I pj(xj |xπG

j
;φj)

∏
j∈I p̃j(xj ;ω

I
j )|I ∈ I} where we introduced the

parameter ωI , {ωIj }j∈I for each I ∈ I to model the distribution of the variables on which we are
intervening. This interpretation together with the acyclicity constraint of GraN-DAG suggests the
following maximum log-likelihood program:

max
φ,{ωI}I∈I

E(X,I)∼P (X,I)

∑
j /∈I

log pj(Xj |X−j ;φj) +
∑
j∈I

log pj(Xj ;ω
I
j )

 s.t. Tr eAφ = d (3)

In principle, the parameters ωI could be learned, but this would not contribute to learning the ground
truth graph. Since (3) can be trivially decomposed in a sum of a max over φ and a max over
{ωI}I∈I , it suffices to solve

max
φ

E(X,I)∼P (X,I)

∑
j /∈I

log p(Xj |X−j ;φj) s.t. Tr eAφ = d. (4)

Again, we solve it using augmented Lagrangian together with stochastic gradient descent. Of note,
other score-based methods (Hauser & Bühlmann, 2012) use a similar form of objective to deal with
interventions with known targets. Note that we use similar thresholding and pruning strategies as
suggested by Lachapelle et al. (2019) (see Appendix A.3).

3.1 EXPERIMENTS

We compare our method to the greedy interventional equivalence search (GIES) method (Hauser &
Bühlmann, 2012) and a modified version of the causal additive model (CAM) method (Bühlmann
et al., 2014). GIES is an extension of GES (Chickering, 2003) that was designed for interven-
tions with known targets. GIES assumes a linear model with Gaussian noise and greedily searches
the space of interventional equivalence classes by maximizing the Bayesian information criterion.
CAM assumes an additive noise model (ANM) where the nonlinear functions are additive. We use
a modified version of CAM (CAM*) where its maximum likelihood objective has been adapted for
the interventional case. GraN-DAG assumes a Gaussian ANM model.

For each task, the performance of each method is assessed by two distances on the retrieved graph
compared to the ground truth graph: i) the structural Hamming distance (SHD) and ii) the structural
interventional distance (SID). The SHD is simply the number of edges that differ between the two
DAGs (either reversed, missing or superfluous). While the SHD is a purely structural measurement,
the SID is especially interesting for causal learning, since it assesses how two DAGs differ with
respect to their causal inference statements (Peters & Bühlmann, 2015).

3.1.1 SYNTHETIC DATA SETS

We used 3 types of data sets with different mechanisms: i) linear functions with Gaussian noise, ii)
Gaussian ANM, and iii) neural network. For each type of data set, graphs vary in term of nodes
(d = 20 or 50) and expected number of edges per node (e = 1 or 4). For each setting, we sampled
10 DAGs following the Erdős-Rényi scheme and then data were generated with the corresponding
mechanisms (See the Appendix A.1). A total of n = 1000 examples were sampled per graph,
equally divided between the d + 1 intervention targets. Of these d + 1 targets, one is observational
(no interventions) and for the d others, interventions were done on each node, one at a time. The
target nodes were replaced by samples from a N (0, 1) without changing the other mechanisms.

We report the SHD and SID for all methods on the nonlinear Gaussian ANM data sets (Table 1),
the linear data sets (Table 2) and the neural network data sets (Table 3). For each data set a hyper-
parameter search was performed on 50 hyperparameter combinations (see Appendix A.3). For each
metric, we report the mean performance over the 10 data sets and its standard deviation. GraN-
DAG denotes the version that supports interventional data and GraN-DAG no interv denotes the
GraN-DAG method without interventions, trained on the same sample size (n = 1000), but on data
sampled from the observational distribution of the same causal model. This way, we can evaluate
the advantage of considering interventions (for a more systematic assessment, see Appendix A.2).
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Table 1: Results for the nonlinear Gaussian ANM data sets with graphs of 20 and 50 nodes with
expected connectivity (e) of 1 and 4. For both metrics, lower is better.

20 nodes, e = 1 20 nodes, e = 4 50 nodes, e = 1 50 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID

GraN-DAG 2.4± 3.3 2.1± 4.4 33.0± 13.8 126.2± 37.9 5.7± 2.9 33.5± 30.3 98.9± 17.1 1029.4± 159.5

GraN-DAG no interv 0.6± 1.3 2.2± 6.3 43.2± 14.4 159.7± 40.8 5.7± 3.0 35.3± 19.8 105.9± 16.0 1062.8± 176.2

GIES 12.1± 6.1 19.4± 19.1 64.8± 10.0 275.3± 47.4 49.0± 12.6 154.8± 79.5 168.2± 24.8 1863.8± 163.8

CAM* 2.6± 2.3 5.5± 4.9 41.0± 20.3 132.7± 40.1 6.1± 3.1 44.1± 31.3 95.7± 20.3 1089.6± 219.3

In Table 1, we observe that GraN-DAG, GraN-DAG no interv and CAM* tend to yield the best
results. Since GraN-DAG no interv makes the right assumptions and that the graph is identifiable
(Peters et al., 2014), purely observational data are sufficient to identify the graph. Nevertheless,
with a finite sample, observing interventions seems to lead to slightly better performance on denser
graphs. GIES has poor performance since it cannot adequately model the nonlinear functions.

Table 2: Results for the linear data sets with graphs of 20 and 50 nodes and expected connectivity
(e) of 1 and 4. For both metrics, lower is better.

20 nodes, e = 1 20 nodes, e = 4 50 nodes, e = 1 50 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID

GraN-DAG 4.8± 3.6 16.3± 13.8 57.9± 13.4 262.0± 28.6 20.6± 7.7 106.9± 70.1 154.7± 22.8 1604.5± 209.1

GraN-DAG no interv 11.3± 4.5 39.3± 16.8 79.6± 8.5 323.4± 24.0 32.2± 7.0 169.3± 70.1 179.8± 26.3 1815.8± 117.8

GIES 3.3± 2.1 3.8± 12.0 23.3± 18.7 74.9± 60.5 17.3± 3.8 3.7± 6.4 248.5± 78.7 1130.3± 444.8

CAM* 3.4± 3.4 8.7± 14.5 62.2± 24.6 181.1± 60.7 5.2± 5.1 21.2± 24.8 149.1± 29.9 1660.3± 288.0

In Table 2, we observe that GIES has the best performance for several conditions. This was expected,
since this method specifically makes the linear Gaussian assumption. For a few settings, CAM* and
GraN-DAG have the best performance. Of note, GraN-DAG clearly has a better performance than
GraN-DAG no interv. This can be explained by the fact that, unlike the ANM data set, the graph is
not identifiable from observational data alone.

Table 3: Results for the neural network data sets with graphs of 20 and 50 nodes and expected
connectivity (e) of 1 and 4. For both metrics, lower is better.

20 nodes, e = 1 20 nodes, e = 4 50 nodes, e = 1 50 nodes, e = 4

Method SHD SID SHD SID SHD SID SHD SID

GraN-DAG 4.5± 3.6 20.2± 14.7 43.7± 5.1 222.7± 32.6 13.8± 4.5 77.5± 25.2 90.2± 14.0 1337.4± 183.9

GraN-DAG no interv 6.0± 3.0 28.8± 21.1 54.8± 8.9 253.8± 30.0 16.4± 6.1 78.4± 40.7 109.2± 34.7 1507.3± 190.2

GIES 10.1± 4.4 10.3± 11.3 63.6± 13.2 217.1± 37.3 43.4± 9.0 41.1± 24.1 182.1± 51.6 1380.7± 269.3

CAM* 8.3± 4.6 23.7± 16.9 92.5± 34.0 203.9± 57.7 19.3± 10.6 109.2± 90.5 135.9± 35.9 1616.5± 200.3

We also explored the performance on a data set with functions that cannot be modeled by the dif-
ferent methods. In fact, neural networks with random initialization yield complex functions, often
with heteroscedastic noise. In Table 3 we observe that, while GraN-DAG no interv is on par with
GraN-DAG in some cases, GraN-DAG has the overall best performance.

3.1.2 REAL-WORLD DATA SETS

As our real-world task, we used the cytometry data set of Sachs et al. (2005) which is commonly
used in the causal literature. The measurements are the level of expression of phosphoproteins and
phospholipids in human cells recorded under different experimental conditions, where reagents were
used to activate or inhibit the measured proteins.

Since in some of these experimental conditions the perturbations were not directly done on a mea-
sured protein, we use only 5846 measurements of the 7466 measurements as in Wang et al. (2017).
Of the 5846 measurements, 1755 measurements are considered observationals, while the other 4091
measurements are from five different interventions (with the following proteins as targets: Akt, PKC,
PIP2, Mek, PIP3). The graph reconstructed by Sachs et al. (2005) is used as the ground truth DAG.
It contains 11 nodes and 17 edges.
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In Table 4, we present the SHD and SID for GraN-DAG, GIES and CAM*. To have a clearer
comparison, we also present the true positive, false negative, false positive, reversed edges, and the
F1 score. Overall, GIES shows the worst performance. This is likely because the linear assumption
does not hold in this data set. GraN-DAG has the lowest SHD, but also the highest SID. This high
SID can partially be explained by the relatively high number of reversed edges. CAM* is clearly
superior in term of the F1 score, followed by GraN-DAG and GIES. One possible explanation might
be that CAM* has the right inductive bias for the mechanisms present in this data set. As part of
future work, we intend to evaluate GraN-DAG on other real-world tasks such as the one from Dixit
et al. (2016).

Table 4: Results for the cytometry data sets

Method SHD SID tp fn fp rev F1 score

GraN-DAG 33 35 7 3 23 7 0.35
GIES 45 34 10 0 41 7 0.33

CAM* 35 20 12 1 30 4 0.51

3.2 DISCUSSION

We proposed an extension of GraN-DAG to the interventional setting. Although other methods (like
CAM*) yield better results in some conditions, GraN-DAG is often on par with the other methods
on a variety of data sets. Also, GraN-DAG generally outperforms its purely observational coun-
terpart, showing the beneficial effect of the interventions. Since the introduction of the continuous
constraint from Zheng et al. (2018), several recent works (Yu et al., 2019; Zheng et al., 2019; Ng
et al., 2019; Kalainathan et al., 2018) proposed causal discovery methods using neural networks
with observational data alone. To the best of our knowledge, this is the first score-based method
that frames the problem of learning a causal model from observational and interventional data as
a continuous constrained optimization problem. Our results are promising and we intend to make
a more extensive comparison to other methods with additional real-world data sets. This first step
opens several new opportunities of future work. Since the identifiability problem is less severe in
the presence of interventional data, it could be interesting to explore more expressive functions than
Gaussian ANM. Moreover, in real-world applications we often do not know which variables have
been targeted during interventions. This setting, referred to as unknown interventions, was addressed
by Eaton & Murphy (2007). Recently, Ke et al. (2019) proposed a method based on neural networks
for this problem. As part of future work, we intend to explore an extension of GraN-DAG to this
challenging setting.
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A APPENDIX

A.1 SYNTHETIC DATA SETS GENERATION

For each type of data set, we first sample a DAG following the Erdős-Rényi scheme and then we
sample the parameters of the different mechanisms as stated below. For the observational case,
we then sample n/(d + 1) examples (n examples in the case of GraN-DAG no interv). For each
intervention, one node is uniformly chosen and replaced by aN (0, 1) and then, n/(d+1) examples
are sampled (if n is not divisible by d + 1, some intervention setting may have one extra sample in
order to have a total of n samples). For all data sets, the source nodes are Gaussian with zero mean
and variance sampled from U [1, 2]. The noise variables Nj are mutually independent and sampled
from N (0, σ2

j ) ∀j.

• The nonlinear Gaussian ANM data sets are generated following Xj := fj(XπG
j
) + Nj

∀j where the functions fj are independently sampled from a Gaussian process with a unit
bandwidth RBF kernel and σ2

j ∼ U [0.4, 0.8].

• The linear data sets are generated following Xj |XπG
j
∼ wTj XπG

j
+ 0.2 ·Nj ∀j where

σ2
j ∼ U [1, 2] and wj is a vector of |πGj | coefficients each sampled uniformly from

[−1,−0.25] ∪ [0.25, 1].

• The neural network data sets are generated following Xj := fj(XπG
j
, Nj) ∀j where the

functions fj are fully connected neural networks with one hidden layer of 20 units and
tanh as nonlinearities. The weights of each neural network are randomly initialized from
N (0, 1).

A.2 IMPACT OF THE NUMBER OF INTERVENTIONS

We explored to what extent the number of interventions has an impact on the graph recovery. Using
the linear data sets with graphs of 50 nodes and edge connectivity of 4, we tested the performance of
GraN-DAG with interventions on data sets with {0, 5, 10, . . . , 50} interventions. The interventional
targets are singleton, i.e. only one variable is intervened upon at a time. In Figure 1 and 2, we
present the mean SHD and SID over 10 data sets for each number of interventions and their standard
deviation. As expected, the number of interventions has a beneficial impact on the performance of
GraN-DAG with intervention: more interventions lead to better SHD and SID.

Figure 1: Effect of the number of interventions on SHD
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Figure 2: Effect of the number of interventions on SID

A.3 HYPERPARAMETER SEARCH

For all methods, we performed a hyperparameter search over 50 hyperparameter combinations us-
ing a random search following the sampling scheme of Table 5. For each data set, the models were
trained on 80% examples and evaluated on the 20% remaining examples (never on the ground truth
DAG). For GIES, since the performances were always worse, we kept the results with the default
value for the regularizer coefficient. Unless otherwise stated, GraN-DAG, with or without inter-
vention, had the same hyperparameters as in Lachapelle et al. (2019): RMSprop was used as the
optimizer, the NN’s activation functions were leaky-ReLU and minibatches of size 64 were used.
For Jac-thresh = 1, the Jacobian matrix trick is used for thresholding. Preliminary neighborhood
selection (PNS) and pruning were also used.

Table 5: Hyperparameter search spaces for each algorithm
Hyperparameter space

GraN-DAG (with/without interventions)

log10(learning rate) ∼ U [−2,−3] (first subproblem)
log10(learning rate) ∼ U [−3,−4] (other subproblems)
# hidden units ∼ U{4, 8, 16, 32, 64}
# hidden layers ∼ U{1, 2, 3}
jac-thresh ∼ U{0, 1}
PNS threshold ∼ U [0.5, 0.75, 1, 2]
log10(edge clamping threshold) ∼ U{−3,−4,−5}
log10(pruning cutoff) ∼ U{−7,−6,−5,−4,−3,−2,−1}
log10(constraint convergence tolerance) ∼ U{−6,−8,−10}

CAM* log10(pruning cutoff) ∼ U [−7, 0]
GIES log10(regularizer coefficient) ∼ U [−4, 4]

8


	Introduction
	Background
	GraN-DAG with interventions
	Experiments
	Synthetic data sets
	Real-world data sets

	Discussion

	Appendix
	Synthetic data sets generation
	Impact of the number of interventions
	Hyperparameter search


